A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge Graph Perspective

Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain.

[1]  Jyothish Soman,et al.  Utilizing graph machine learning within drug discovery and development , 2021, Briefings Bioinform..

[2]  Trevor W. Heritage,et al.  Network graph representation of COVID-19 scientific publications to aid knowledge discovery , 2020, BMJ Health & Care Informatics.

[3]  Gautier Koscielny,et al.  Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics , 2020, Nucleic Acids Res..

[4]  Boyan A. Onyshkevych,et al.  COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation , 2020, NAACL.

[5]  Volker Tresp,et al.  Bringing Light Into the Dark: A Large-Scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Steffen Staab,et al.  Knowledge graphs , 2021, Commun. ACM.

[7]  Sameh K. Mohamed,et al.  Biological applications of knowledge graph embedding models , 2020, Briefings Bioinform..

[8]  Krister Wennerberg,et al.  Exploration of databases and methods supporting drug repurposing: a comprehensive survey , 2020, Briefings Bioinform..

[9]  Yaohang Li,et al.  Biomedical data and computational models for drug repositioning: a comprehensive review , 2020, Briefings Bioinform..

[10]  Kayvan Najarian,et al.  Machine learning approaches and databases for prediction of drug–target interaction: a survey paper , 2020, Briefings Bioinform..

[11]  Dietmar Jannach,et al.  A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research , 2019, ACM Trans. Inf. Syst..

[12]  Myle Ott,et al.  Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences , 2019, Proceedings of the National Academy of Sciences.

[13]  Yuedong Yang,et al.  PharmKG: a dedicated knowledge graph benchmark for bomedical data mining , 2020, Briefings Bioinform..

[14]  Jeremy B. R. Hayter,et al.  Utilising Graph Machine Learning within Drug Discovery and Development , 2020, ArXiv.

[15]  V. López,et al.  Exploring the Social Drivers of Health During a Pandemic: Leveraging Knowledge Graphs and Population Trends in COVID-19. , 2020, Studies in health technology and informatics.

[16]  Saee Paliwal,et al.  Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs , 2020, Scientific Reports.

[17]  Sameh K. Mohamed,et al.  BioKG: A Knowledge Graph for Relational Learning On Biological Data , 2020, CIKM.

[18]  Jing Tang,et al.  Drug Repurposing for COVID-19 using Graph Neural Network with Genetic, Mechanistic, and Epidemiological Validation , 2020, Research square.

[19]  William L. Hamilton Graph Representation Learning , 2020, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[20]  Peter N. Robinson,et al.  KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response , 2020, bioRxiv.

[21]  Patrice Godard,et al.  Dictionary of disease ontologies (DODO): a graph database to facilitate access and interaction with disease and phenotype ontologies , 2020, F1000Research.

[22]  Parminder Bhatia,et al.  COVID-19 Knowledge Graph: Accelerating Information Retrieval and Discovery for Scientific Literature , 2020, KNLP.

[23]  George Karypis,et al.  Few-shot link prediction via graph neural networks for Covid-19 drug-repurposing , 2020, ArXiv.

[24]  Fei Wang,et al.  Knowledge-driven drug repurposing using a comprehensive drug knowledge graph , 2020, Health Informatics J..

[25]  Volker Tresp,et al.  Integrating Logical Rules Into Neural Multi-Hop Reasoning for Drug Repurposing , 2020, ArXiv.

[26]  Lars Juhl Jensen,et al.  Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making , 2020, bioRxiv.

[27]  William A. Baumgartner,et al.  A Framework for Automated Construction of Heterogeneous Large-Scale Biomedical Knowledge Graphs , 2020, bioRxiv.

[28]  J. Leskovec,et al.  Open Graph Benchmark: Datasets for Machine Learning on Graphs , 2020, NeurIPS.

[29]  Martin Hofmann-Apitius,et al.  COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology , 2020, bioRxiv.

[30]  Yizhou Sun,et al.  Heterogeneous Graph Transformer , 2020, WWW.

[31]  M. Berrendorf,et al.  On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods , 2020, 2002.06914.

[32]  M. Blanco,et al.  New Chemical Modalities and Strategic Thinking in Early Drug Discovery. , 2020, ACS medicinal chemistry letters.

[33]  Xosé M. Fernández,et al.  The 27th annual Nucleic Acids Research database issue and molecular biology database collection , 2019, Nucleic Acids Res..

[34]  A. Micheli,et al.  A Fair Comparison of Graph Neural Networks for Graph Classification , 2019, ICLR.

[35]  M. Samwald,et al.  OpenBioLink: a benchmarking framework for large-scale biomedical link prediction , 2019, Bioinform..

[36]  Astrid Gall,et al.  Ensembl 2020 , 2019, Nucleic Acids Res..

[37]  F. Sanz,et al.  The DisGeNET knowledge platform for disease genomics: 2019 update , 2019, Nucleic Acids Res..

[38]  Chris Sander,et al.  Pathway Commons 2019 Update: integration, analysis and exploration of pathway data , 2019, Nucleic Acids Res..

[39]  Sameh K. Mohamed,et al.  Discovering protein drug targets using knowledge graph embeddings , 2019, Bioinform..

[40]  Jaewoo Kang,et al.  BioBERT: a pre-trained biomedical language representation model for biomedical text mining , 2019, Bioinform..

[41]  Janu Verma,et al.  Information Retrieval and Extraction on COVID-19 Clinical Articles Using Graph Community Detection and Bio-BERT Embeddings , 2020, NLPCOVID19.

[42]  Ali Masoudi-Nejad,et al.  Drug databases and their contributions to drug repurposing. , 2020, Genomics.

[43]  Lei Xie,et al.  Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis , 2020, Frontiers in Genetics.

[44]  Oguz Dikenelli,et al.  Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings , 2019, BMC Bioinformatics.

[45]  G. Karypis,et al.  Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks. , 2019 .

[46]  Donna K. Slonim,et al.  Assessment of network module identification across complex diseases , 2019, Nature Methods.

[47]  Nitesh V. Chawla,et al.  Heterogeneous Graph Neural Network , 2019, KDD.

[48]  Fei Wang,et al.  Drug knowledge bases and their applications in biomedical informatics research , 2019, Briefings Bioinform..

[49]  Martin Hofmann-Apitius,et al.  The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling , 2019, bioRxiv.

[50]  Bin Li,et al.  Applications of machine learning in drug discovery and development , 2019, Nature Reviews Drug Discovery.

[51]  Atul J. Butte,et al.  Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings , 2019, Nature Communications.

[52]  Jacob F. Degner,et al.  Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval , 2019, bioRxiv.

[53]  Lei Chen,et al.  NSCaching: Simple and Efficient Negative Sampling for Knowledge Graph Embedding , 2018, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[54]  Kara Dolinski,et al.  The BioGRID interaction database: 2019 update , 2018, Nucleic Acids Res..

[55]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[56]  Tudor Groza,et al.  Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources , 2018, Nucleic Acids Res..

[57]  Gautier Koscielny,et al.  Open Targets Platform: new developments and updates two years on , 2018, Nucleic Acids Res..

[58]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[59]  Sunmo Yang,et al.  HumanNet v2: human gene networks for disease research , 2018, Nucleic Acids Res..

[60]  Michelle Giglio,et al.  Human Disease Ontology 2018 update: classification, content and workflow expansion , 2018, Nucleic Acids Res..

[61]  Silvio C. E. Tosatto,et al.  InterPro in 2019: improving coverage, classification and access to protein sequence annotations , 2018, Nucleic Acids Res..

[62]  Andrew R. Leach,et al.  ChEMBL: towards direct deposition of bioassay data , 2018, Nucleic Acids Res..

[63]  Alex Bateman,et al.  RNAcentral: a hub of information for non-coding RNA sequences , 2018, Nucleic Acids Res..

[64]  Angela Lopez-del Rio,et al.  Evaluation of Cross-Validation Strategies in Sequence-Based Binding Prediction Using Deep Learning , 2018, J. Chem. Inf. Model..

[65]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2019 , 2018, Nucleic Acids Res..

[66]  Zachary C. Lipton,et al.  Troubling Trends in Machine Learning Scholarship , 2018, ACM Queue.

[67]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[68]  Yutaka Saito,et al.  Convolutional neural network based on SMILES representation of compounds for detecting chemical motif , 2018, BMC Bioinformatics.

[69]  Jens Lehmann,et al.  BioKEEN: a library for learning and evaluating biological knowledge graph embeddings , 2019, Bioinform..

[70]  Xiangrong Liu,et al.  Machine Learning for Drug-Target Interaction Prediction , 2018, Molecules.

[71]  Jorge Pérez,et al.  Semantics and Complexity of GraphQL , 2018, WWW.

[72]  Anton Simeonov,et al.  Unexplored therapeutic opportunities in the human genome , 2018, Nature Reviews Drug Discovery.

[73]  Russ B. Altman,et al.  A global network of biomedical relationships derived from text , 2018, Bioinform..

[74]  Jure Leskovec,et al.  Modeling polypharmacy side effects with graph convolutional networks , 2018, bioRxiv.

[75]  Lynn D. Hudson,et al.  A dynamic map for learning, communicating, navigating and improving therapeutic development , 2018, Nature Reviews Drug Discovery.

[76]  David J. Nicholls,et al.  Impact of a five-dimensional framework on R&D productivity at AstraZeneca , 2018, Nature Reviews Drug Discovery.

[77]  Ryan Miller,et al.  WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research , 2017, Nucleic Acids Res..

[78]  Tim Weninger,et al.  Open-World Knowledge Graph Completion , 2017, AAAI.

[79]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[80]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[81]  Charles Tapley Hoyt,et al.  PyBEL: a computational framework for Biological Expression Language , 2017, Bioinform..

[82]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[83]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[84]  Lawrence Hunter,et al.  Knowledge-based biomedical Data Science , 2017, Data Sci..

[85]  Zhendong Mao,et al.  Knowledge Graph Embedding: A Survey of Approaches and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[86]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[87]  Szymon Klarman,et al.  BioGrakn: A Knowledge Graph-Based Semantic Database for Biomedical Sciences , 2017, CISIS.

[88]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[89]  Rajarshi Guha,et al.  Drug target ontology to classify and integrate drug discovery data , 2017, J. Biomed. Semant..

[90]  Chirag J Patel,et al.  A standard database for drug repositioning , 2017, Scientific Data.

[91]  Dexter Hadley,et al.  Systematic integration of biomedical knowledge prioritizes drugs for repurposing , 2017, bioRxiv.

[92]  Fernando Berzal Galiano,et al.  A Survey of Link Prediction in Complex Networks , 2016, ACM Comput. Surv..

[93]  Gautier Koscielny,et al.  Open Targets: a platform for therapeutic target identification and validation , 2016, Nucleic Acids Res..

[94]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[95]  Rajarshi Guha,et al.  Pharos: Collating protein information to shed light on the druggable genome , 2016, Nucleic Acids Res..

[96]  Tudor I. Oprea,et al.  DrugCentral: online drug compendium , 2016, Nucleic Acids Res..

[97]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[98]  Simon Jupp,et al.  OxO - A Gravy of Ontology Mapping Extracts , 2017, ICBO.

[99]  Cathy H. Wu,et al.  Protein Bioinformatics Databases and Resources. , 2017, Methods in molecular biology.

[100]  Julio Saez-Rodriguez,et al.  OmniPath: guidelines and gateway for literature-curated signaling pathway resources , 2016, Nature Methods.

[101]  Tudor Groza,et al.  The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species , 2016, bioRxiv.

[102]  Charles E. Cook,et al.  Identifying ELIXIR Core Data Resources , 2016, F1000Research.

[103]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[104]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[105]  Ryan Miller,et al.  Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources , 2016, PLoS Comput. Biol..

[106]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[107]  Damian Szklarczyk,et al.  STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data , 2015, Nucleic Acids Res..

[108]  Peer Bork,et al.  The SIDER database of drugs and side effects , 2015, Nucleic Acids Res..

[109]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[110]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[111]  Jing Chen,et al.  NDEx, the Network Data Exchange. , 2015, Cell systems.

[112]  Danqi Chen,et al.  Observed versus latent features for knowledge base and text inference , 2015, CVSC.

[113]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[114]  Lawrence Hunter,et al.  KaBOB: ontology-based semantic integration of biomedical databases , 2015, BMC Bioinformatics.

[115]  Núria Queralt-Rosinach,et al.  DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes , 2015, Database J. Biol. Databases Curation.

[116]  Janos X. Binder,et al.  DISEASES: Text mining and data integration of disease–gene associations , 2014, bioRxiv.

[117]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[118]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[119]  Tatiana A. Tatusova,et al.  Gene: a gene-centered information resource at NCBI , 2014, Nucleic Acids Res..

[120]  Hugo Larochelle,et al.  Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality , 2015, CVSC.

[121]  Michel Dumontier,et al.  Bio2RDF Release 3: A larger, more connected network of Linked Data for the Life Sciences , 2014, SEMWEB.

[122]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[123]  M. Pangalos,et al.  Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework , 2014, Nature Reviews Drug Discovery.

[124]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[125]  Ted Slater,et al.  Recent advances in modeling languages for pathway maps and computable biological networks. , 2014, Drug discovery today.

[126]  Andrew M. Jenkinson,et al.  The EBI RDF platform: linked open data for the life sciences , 2014, Bioinform..

[127]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[128]  Lars Juhl Jensen,et al.  Are graph databases ready for bioinformatics? , 2013, Bioinform..

[129]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[130]  Behnam Neyshabur,et al.  NETAL: a new graph-based method for global alignment of protein-protein interaction networks , 2013, Bioinform..

[131]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  R. Altman,et al.  Pharmacogenomics Knowledge for Personalized Medicine , 2012, Clinical pharmacology and therapeutics.

[133]  R. Altman,et al.  Data-Driven Prediction of Drug Effects and Interactions , 2012, Science Translational Medicine.

[134]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[135]  Gang Feng,et al.  Disease Ontology: a backbone for disease semantic integration , 2011, Nucleic Acids Res..

[136]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[137]  Daniel P. Miranker,et al.  Mapping between the OBO and OWL ontology languages , 2011, J. Biomed. Semant..

[138]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[139]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[140]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[141]  Ravi Iyengar,et al.  Quantitative and Systems Pharmacology in the Post-genomic Era : New Approaches to Discovering Drugs and Understanding Therapeutic , 2011 .

[142]  Anna Zhukova,et al.  Modeling sample variables with an Experimental Factor Ontology , 2010, Bioinform..

[143]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[144]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[145]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[146]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[147]  Nicole Tourigny,et al.  Bio2RDF: Towards a mashup to build bioinformatics knowledge systems , 2008, J. Biomed. Informatics.

[148]  Yoshihiro Yamanishi,et al.  Prediction of drug–target interaction networks from the integration of chemical and genomic spaces , 2008, ISMB.

[149]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[150]  Daniel L. Rubin,et al.  Biomedical ontologies: a functional perspective , 2007, Briefings Bioinform..

[151]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[152]  Giorgio Valle,et al.  The Gene Ontology project in 2008 , 2007, Nucleic Acids Res..

[153]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[154]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..

[155]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[156]  Kumaran Kandasamy,et al.  An evaluation of human protein-protein interaction data in the public domain , 2006, BMC Bioinformatics.

[157]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[158]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[159]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[160]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[161]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[162]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[163]  Frank van Harmelen,et al.  A semantic web primer , 2004 .

[164]  Antje Chang,et al.  BRENDA , the enzyme database : updates and major new developments , 2003 .

[165]  S. Amladi,et al.  Online Mendelian Inheritance in Man 'OMIM'. , 2003, Indian journal of dermatology, venereology and leprology.

[166]  M. Lindsay Target discovery , 2003, Nature Reviews Drug Discovery.

[167]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[168]  X. Chen,et al.  TTD: Therapeutic Target Database , 2002, Nucleic Acids Res..

[169]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[170]  X Chen,et al.  BindingDB: a web-accessible molecular recognition database. , 2001, Combinatorial chemistry & high throughput screening.

[171]  G. Terstappen,et al.  In silico research in drug discovery. , 2001, Trends in pharmacological sciences.

[172]  Steffen Schulze-Kremer,et al.  Ontologies for Molecular Biology , 2001, Electron. Trans. Artif. Intell..

[173]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.