Super Quantum Discord for X-type States

Weak measurement is a new way to manipulate and control quantum systems. Different from projection measurement, weak measurement only makes a small change in status. Applying weak measurement to quantum discord, Singh and Pati proposed a new kind of quantum correlations called “super quantum discord (SQD)” [Ann. Phys. 343,141(2014)].Unfortunately, the super quantum discord is also difficult to calculate. There are only few explicit formulae about SQD. We derive an analytical formula of SQD for general X-type two-qubit states, which surpass the conclusion for Werner states and Bell diagonal states. Furthermore, our results reveal more knowledge about the new insight of quantum correlation and give a new way to compare SQD with normal quantum discord. Finally, we analyze its dynamics under nondissipative channels.

[1]  Uttam Singh,et al.  Quantum discord with weak measurements , 2012, 1211.0939.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[3]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[4]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[5]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[6]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[7]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[8]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[9]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[10]  Nan Li,et al.  Total versus quantum correlations in quantum states , 2007 .

[11]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[12]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[13]  Jiangfeng Du,et al.  Optimal measurement for quantum discord of two-qubit states , 2011, 1110.6681.

[14]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[16]  Andrzej Kossakowski,et al.  Long-time memory in non-Markovian evolutions , 2009, 0906.5122.

[17]  Teng Ma,et al.  Super-quantum correlation and geometry for Bell-diagonal states with weak measurements , 2013, Quantum Inf. Process..

[18]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[19]  Gernot Alber,et al.  Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] , 2010 .

[20]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[21]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[22]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[23]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[24]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[25]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[26]  Zhi-Xi Wang,et al.  Assisted state discrimination without entanglement , 2011, 1111.2645.

[27]  Luis Roa,et al.  Dissonance is required for assisted optimal state discrimination. , 2011, Physical review letters.

[28]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[29]  S. Fei,et al.  Quantum Discord and Geometry for a Class of Two-qubit States , 2011, 1104.1843.

[30]  S. Luo Quantum discord for two-qubit systems , 2008 .