Dissipative Boussinesq equations

The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.

[1]  M. Boussinesq Essai sur la théorie des eaux courantes , 1873 .

[2]  William W. Schultz,et al.  Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries , 1996, Journal of Fluid Mechanics.

[3]  V. Lakhan Advances in coastal modeling , 2003 .

[4]  L. R. Scott,et al.  An evaluation of a model equation for water waves , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[6]  Wenbin Zhang,et al.  Pattern formation in weakly damped parametric surface waves , 1996, Journal of Fluid Mechanics.

[7]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[8]  A. I. Dyachenko,et al.  Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions , 2007, 0704.3352.

[9]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[10]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[11]  H. Schäffer,et al.  Higher–order Boussinesq–type equations for surface gravity waves: derivation and analysis , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  K. D. Ruvinsky,et al.  NUMERICAL SIMULATIONS OF THE QUASI-STATIONARY STAGE OF RIPPLE EXCITATION BY STEEP GRAVITY-CAPILLARY WAVES , 1991 .

[13]  Rj Murray Short Wave Modelling Using New Equations of Boussinesq Type , 1989 .

[14]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[15]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[16]  M. Longuet-Higgins Theory of weakly damped Stokes waves: a new formulation and its physical interpretation , 1992, Journal of Fluid Mechanics.

[17]  Anjan Kundu Tsunami and nonlinear waves , 2007 .

[18]  Denys Dutykh,et al.  Water waves generated by a moving bottom , 2007 .

[19]  Min Chen Exact Traveling-Wave Solutions to Bidirectional Wave Equations , 1998 .

[20]  F. Ursell,et al.  The long-wave paradox in the theory of gravity waves , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  James M. Witting,et al.  A Unified Model for the Evolution of Nonlinear Water Waves , 1982 .

[22]  J. A. Zelt The run-up of nonbreaking and breaking solitary waves , 1991 .

[23]  George W. Housner,et al.  Numerical Model for Tsunami Run-Up , 1970 .

[24]  A. Newell Finite Amplitude Instabilities of Partial Difference Equations , 1977 .

[25]  J. L. Davies,et al.  Waves on Beaches and Resulting Sediment Transport , 1973 .

[26]  D. Peregrine Equations for Water Waves and the Approximation behind Them , 1972 .

[27]  Free-surface wave damping due to viscosity and surfactants , 2002 .

[28]  Denys Dutykh,et al.  Viscous potential free-surface flows in a fluid layer of finite depth , 2007, 0705.1281.

[29]  Min Chen,et al.  Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory , 2002, J. Nonlinear Sci..

[30]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics , 1991 .