Extracting random numbers from quantum tunnelling through a single diode

Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

[1]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[2]  Çetin Kaya Koç Open Problems in Mathematics and Computational Science , 2014, Springer International Publishing.

[3]  Datta,et al.  Resonant tunneling through quantum-dot arrays. , 1994, Physical review. B, Condensed matter.

[4]  Simon W. Moore,et al.  The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators , 2009, CHES.

[5]  Koichi Maezawa,et al.  Monostable-Bistable Transition Logic Elements(MOBILEs) Based on Monolithic Integration of Resonant Tunneling Diodes and FETs. , 1995 .

[6]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[7]  A. Krier,et al.  Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode , 2016, Scientific Reports.

[8]  Bruno Ricco,et al.  Physics of resonant tunneling. The one-dimensional double-barrier case , 1984 .

[9]  M. J. Deen,et al.  A new resonant-tunnel diode-based multivalued memory circuit using a MESFET depletion load , 1992 .

[10]  Fabio Marchesoni,et al.  Mesoscopic resistive switch: non-volatility, hysteresis and negative differential resistance , 2013 .

[11]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[12]  G. Haddad,et al.  Power and stability limitations of resonant tunneling diodes , 1990 .

[13]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[14]  A. Kriman,et al.  Transient switching behavior of the resonant-tunneling diode , 1988, IEEE Electron Device Letters.

[15]  Safumi Suzuki,et al.  Theoretical analysis of external feedback effect on oscillation characteristics of resonant-tunneling-diode terahertz oscillators , 2015 .

[16]  Renato Renner,et al.  True randomness from realistic quantum devices , 2013, ArXiv.

[17]  Dong Hee Shin,et al.  Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes , 2016, Scientific Reports.

[18]  Kwok K. Ng Resonant‐Tunneling Diode , 2010 .

[19]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[20]  James Sexton,et al.  Fabrication of Submicrometer InGaAs/AlAs Resonant Tunneling Diode Using a Trilayer Soft Reflow Technique With Excellent Scalability , 2014, IEEE Transactions on Electron Devices.

[21]  Lain-Jong Li,et al.  Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2. , 2014, Nano letters.

[22]  Paolo Villoresi,et al.  Random bits, true and unbiased, from atmospheric turbulence , 2013, Scientific Reports.

[23]  Douglas J. Paul,et al.  Si/SiGe Tunneling Static Random Access Memories , 2013 .

[24]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[25]  Imran Mehdi,et al.  Bias circuit instabilities and their effect on the d.c. current-voltage characteristics of double-barrier resonant tunneling diodes , 1991 .

[26]  Marco Polini,et al.  Resonant tunneling and the quasiparticle lifetime in graphene/boron nitride/graphene heterostructures , 2015, 1512.08684.

[27]  Yutaka Ohno,et al.  Direct Observation of High-Frequency Chaos Signals from the Resonant Tunneling Chaos Generator , 2004 .

[28]  Safumi Suzuki,et al.  Experimental and Theoretical Characteristics of Sub-Terahertz and Terahertz Oscillations of Resonant Tunneling Diodes Integrated with Slot Antennas , 2005 .

[29]  Zhenghua An,et al.  Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection , 2015, Scientific Reports.

[30]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[31]  K. Novoselov,et al.  Resonant tunnelling and negative differential conductance in graphene transistors , 2013, Nature Communications.

[32]  Koichi Maezawa,et al.  Resonant Tunneling Chaos Generator for High-Speed/Low-Power Frequency Divider , 1999 .

[33]  A. Geim,et al.  Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. , 2014, Nature nanotechnology.

[34]  Koichi Maezawa,et al.  Robust Operation of a Novel Frequency Divider Using Resonant Tunneling Chaos Circuit , 2000 .

[35]  F. Sheard,et al.  Space‐charge buildup and bistability in resonant‐tunneling double‐barrier structures , 1988 .

[36]  Gabriel M. Crean,et al.  Si/SiGe electron resonant tunneling diodes with graded spacer wells , 2001 .

[37]  M. Missous,et al.  Using Quantum Confinement to Uniquely Identify Devices , 2015, Scientific Reports.