Synthesis and characterization of nickel complex anchored onto MCM-41 as a novel and reusable nanocatalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones

[1]  A. Ghorbani‐Choghamarani,et al.  Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts , 2015 .

[2]  M. Hajjami,et al.  Synthesis and characterization of glucosulfonic acid supported on Fe3O4 nanoparticles as a novel and magnetically recoverable nanocatalyst and its application in the synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives , 2015 .

[3]  A. Ghorbani‐Choghamarani,et al.  Oxo‐vanadium(IV) Schiff base complex supported on modified MCM‐41: a reusable and efficient catalyst for the oxidation of sulfides and oxidative S–S coupling of thiols , 2015 .

[4]  A. Ghorbani‐Choghamarani,et al.  Anchoring of Pd(II) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C–C, C–O and C–N coupling reactions using Ph3SnCl , 2015 .

[5]  A. Ghorbani‐Choghamarani,et al.  Schiff base complex coated Fe3O4 nanoparticles: A highly reusable nanocatalyst for the selective oxidation of sulfides and oxidative coupling of thiols , 2015 .

[6]  A. Ghorbani‐Choghamarani,et al.  Synthesis, characterization, and application of Fe3O4-SA-PPCA as a novel nanomagnetic reusable catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones and polyhydroquinolines , 2015 .

[7]  B. Bhat,et al.  Nano Fe3O4@APTES@Ni(OH)2 as a catalyst for alcohol oxidation , 2015 .

[8]  A. Ghorbani‐Choghamarani,et al.  Bidentate salen Cu(II) complex functionalized on mesoporous MCM-41 as novel nano catalyst for the oxidative coupling of thiols into disulfides using urea hydrogen peroxide (UHP) , 2015, Journal of Porous Materials.

[9]  A. Ghorbani‐Choghamarani,et al.  Synthesis of copper (II)-supported magnetic nanoparticle and study of its catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones , 2014 .

[10]  Suojiang Zhang,et al.  Modified extra-large mesoporous silica supported Au–Ni as a highly efficient catalyst for oxidative coupling of aldehydes with methanol , 2014 .

[11]  J. Fierro,et al.  Enantioselective hydrogenation of 1-phenyl-1,2-propanodione on cinchonidine-modified Rh/MCM-41 catalysts , 2014 .

[12]  M. Hajjami,et al.  MCM-41-N-propylsulfamic acid: An efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphtols , 2014 .

[13]  Pravin V. Shinde,et al.  A facile and rapid access towards the synthesis of 2,3-dihydroquinazolin-4(1H)-ones , 2013 .

[14]  A. Rostami,et al.  Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water , 2013 .

[15]  K. Ramesh,et al.  A concise aqueous phase supramolecular synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one derivatives , 2012 .

[16]  Jiuxi Chen,et al.  Tandem synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones on grinding under solvent‐free conditions , 2012 .

[17]  M. Pal,et al.  Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysis , 2012 .

[18]  Deepty Sharma,et al.  Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. , 2012, The Journal of organic chemistry.

[19]  Lei Wang,et al.  Synthesis of 2-Substituted-2,3-dihydro-4(1H)- quinazolinones using Sodium Bisulfate as a Catalyst by the Grinding Technique , 2012 .

[20]  Y. R. Lee,et al.  Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives , 2011 .

[21]  A. Rostami,et al.  Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol , 2011 .

[22]  Lei Wang,et al.  Cerium(IV) ammonium nitrate catalyzed green synthesis of 2-substituted 2,3-dihydro- quinazolin-4(1H)-ones using a grinding technique , 2011 .

[23]  H. Zamani,et al.  Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction , 2011 .

[24]  M. Bakavoli,et al.  Silica Gel‐Supported Polyphosphoric Acid (PPA/SiO2): An Efficient and Reusable Heterogeneous Catalyst for Facile Synthesis of 14‐Aryl‐14H‐dibenzo[a,j]xanthenes under Solvent‐free Conditions , 2011 .

[25]  Jinyue Yan,et al.  Catalytic performance and characterization of Al2O3-supported Pt-Co catalyst coatings for preferential CO oxidation in a micro-reactor , 2010 .

[26]  Matthew E Welsch,et al.  Privileged scaffolds for library design and drug discovery. , 2010, Current opinion in chemical biology.

[27]  A. Fakhari,et al.  Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst , 2010 .

[28]  H. Shaterian,et al.  PPA‐SiO2 as a Heterogeneous Catalyst for Efficient Synthesis of 2‐Substituted‐1,2,3,4‐tetrahydro‐4‐quinazolinones under Solvent‐free Conditions , 2009 .

[29]  Z. Derriche,et al.  Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. , 2009, Journal of hazardous materials.

[30]  M. Rueping,et al.  Asymmetric Brønsted acid catalysis: catalytic enantioselective synthesis of highly biologically active dihydroquinazolinones. , 2009, Angewandte Chemie.

[31]  R. Goddard,et al.  Direct catalytic asymmetric synthesis of cyclic aminals from aldehydes. , 2008, Journal of the American Chemical Society.

[32]  A. Maleki,et al.  Click Reaction: Highly Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones , 2008 .

[33]  N. Shadjou,et al.  Synthesis of New 2-Aryl Substituted 2,3-Dihydroquinazoline-4(1H)-ones Under Solvent-Free Conditions, Using Molecular Iodine as a Mild and Efficient Catalyst , 2008 .

[34]  W. Su,et al.  Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones , 2008 .

[35]  H. Choo,et al.  Novel quinazolinone derivatives as 5-HT7 receptor ligands. , 2008, Bioorganic & medicinal chemistry.

[36]  W. Su,et al.  Eco-friendly synthesis of 2,3 -dihydroquinazolin -4 (1H) -ones in ionic liquids or ionic liquid-water without additional catalyst , 2007 .

[37]  Y. Wang,et al.  A facile synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in 2,2,2-trifluoroethanol , 2007 .

[38]  W. Su,et al.  A facile synthesis of 2,3-dihydro-2-aryl-4(1H)-quinazolinones catalyzed by scandium(III) triflate , 2007 .

[39]  M. Dabiri,et al.  One‐Pot, Three‐Component Synthesis of 2,3‐Dihydro‐4(1H)‐quinazolinones by Montmorillonite K‐10 as an Efficient and Reusable Catalyst , 2006 .

[40]  A. Sakthivel,et al.  A chiral menthyl cyclopentadienyl molybdenum tricarbonyl chloro complex: Synthesis, heterogenization on MCM-41/MCM-48 and application in olefin epoxidation catalysis , 2006 .

[41]  S. Ghosh,et al.  Perchloric Acid Impregnated on Silica Gel (HClO4/SiO2): A Versatile Catalyst for Michael Addition of Thiols to the Electron-Deficient Alkenes , 2006 .

[42]  J. Fettinger,et al.  Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones. , 2005, The Journal of organic chemistry.

[43]  Christopher J. Wilson,et al.  Novel one-pot total syntheses of deoxyvasicinone, mackinazolinone, isaindigotone, and their derivatives promoted by microwave irradiation. , 2005, Organic Letters.

[44]  R. Zăvoianu,et al.  Ni(2,2’-bypiridine)2Cl2 encapsulated in Y zeolite – new catalyst for ethylene dimerization , 2005 .

[45]  G. Kukreja,et al.  Nickel boride mediated reductive desulfurization of 2‐thioxo‐4(3H)‐quinazolinones: A new synthesis of quinazolin‐4(3H)‐ones and 2,3‐dihydro‐4(1H)‐quinazolinones , 2003 .

[46]  D. Shi,et al.  Synthesis of quinazolin-4(3H)-ones and 1,2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent , 2003 .

[47]  W. Su,et al.  Reductive Cyclization of Nitro and Azide Compounds with Aldehydes and Ketones Promoted by Metallic Samarium and Catalytic Amount of Iodine , 2002 .

[48]  J Kaustová,et al.  Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones. , 2001, Farmaco.

[49]  Qiang Cai,et al.  Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium , 2001 .

[50]  J. Clark,et al.  Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents , 2000 .

[51]  C. Song,et al.  Immobilisation of ketone catalyst: a method to prevent ketone catalyst from decomposing during dioxirane-mediated epoxidation of alkenes , 2000 .

[52]  Gerard V. Smith,et al.  Heterogeneous Catalysis in Organic Chemistry , 1999 .

[53]  C. Kappe 100 years of the biginelli dihydropyrimidine synthesis , 1993 .

[54]  J. F. Wolfe,et al.  Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones. , 1990, Journal of medicinal chemistry.

[55]  T. Kametani,et al.  イミノケテンの環状付加反応 II イミノケテンとアミドの縮合反応によるアルボリン,グリコスミニン,およびルテカルピンの全合成 , 1977 .

[56]  G. J. Sutherland,et al.  Reactions of anthranilamide and o-aminoacetophenone with benzil and benzoin , 1969 .

[57]  Ramesh Chandra Arora,et al.  Effect of quinazolone ring substitution on the monoamine oxidase inhibitory properties of substituted salicyl hydrazides. , 1969, The Indian journal of medical research.