Effect of CO2/propane ratio and trimetallic oxide catalysts on maximizing dry reforming of propane

[1]  D. Vo,et al.  Influence of synthesis routes on the performance of Ni nano-sized catalyst supported on CeO2-Al2O3 in the dry reforming of methane , 2022, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[2]  Yimin Zhang,et al.  Oxygen vacancy promoted CO2 activation over acidic-treated LaCoO3 for dry reforming of propane , 2022, Materials Today Sustainability.

[3]  M. Rezaei,et al.  Propane dry reforming over highly active NiO-MgO solid solution catalyst for synthesis gas production , 2022, Molecular Catalysis.

[4]  M. Kazemeini,et al.  Effect of rare-earth promoters (Ce, La, Y and Zr) on the catalytic performance of NiO-MgO-SiO2 catalyst in propane dry reforming , 2022, Molecular Catalysis.

[5]  M. Kazemeini,et al.  Syngas production through CO2 reforming of propane over highly active and stable mesoporous NiO-MgO-SiO2catalysts: Effect of calcination temperature , 2022, Fuel.

[6]  S. Kawi,et al.  H2S-resistant CeO2-NiO-MgO-Al2O3 LDH-derived catalysts for steam reforming of toluene , 2021 .

[7]  V. Savchenko,et al.  Utilization of CO2 in non-catalytic dry reforming of C1–C4 hydrocarbons , 2021 .

[8]  L. Barbu-Tudoran,et al.  CO2 Methanation Using Multimodal Ni/SiO2 Catalysts: Effect of Support Modification by MgO, CeO2, and La2O3 , 2021, Catalysts.

[9]  Mohammed A. Alabdullah,et al.  Rhodium Nanoparticle Size Effects on the CO2 Reforming of Methane and Propane , 2021 .

[10]  Xiaolin Zhu,et al.  Ethylbenzene dehydrogenation over Fe2O3 promoted TiO2-ZrO2 catalysts and corresponding conceptual fluidized bed process , 2021 .

[11]  D. R. Brown,et al.  Direct conversion of CO2 with methane into chemicals over ZrO2/TiO2 catalysts , 2021 .

[12]  A. Wijanarko,et al.  The use of gross split contract scheme in economic analysis of shale gas field at meliat formation in Tarakan Basin , 2021 .

[13]  D. R. Brown,et al.  CO2-assisted propane dehydrogenation over of zirconia-titania catalysts: Effect of the carbon dioxide to propane ratios on olefin yields , 2021 .

[14]  S. Katikaneni,et al.  C-H and C-C bonds activation of propane to propylene and ethylene selectivity assisted by CO2 over titania catalysts , 2021, New Journal of Chemistry.

[15]  J. Gomes,et al.  Catalytic reactions for H2 production on multimetallic surfaces: a review , 2021, Journal of Physics: Energy.

[16]  A. Al-Fatesh,et al.  Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2 , 2020 .

[17]  M. Kumar,et al.  Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations , 2020, Biomass Conversion and Biorefinery.

[18]  Preethi,et al.  Techno-economic assessment of various hydrogen production methods - A review. , 2020, Bioresource technology.

[19]  N. R. Shiju,et al.  Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2AlC MAX Phase , 2020, ChemSusChem.

[20]  Hai Nguyen Tran,et al.  Ethanol CO2 reforming on La2O3 and CeO2-promoted Cu/Al2O3 catalysts for enhanced hydrogen production , 2020 .

[21]  R. Pérez‐Hernández,et al.  Synthesis by the sol-gel method and characterization of Pt-promoted CuO/TiO2-ZrO2 catalysts for decomposition of 2-propanol , 2020, Catalysis Today.

[22]  M. Rønning,et al.  Synthesis strategies of Zr- and Y-promoted mixed oxides derived from double-layered hydroxides for syngas production via dry reforming of methane , 2020 .

[23]  O. Muraza,et al.  Effects of metal support interaction on dry reforming of methane over Ni/ Ce‐Al 2 O 3 catalysts , 2020, The Canadian Journal of Chemical Engineering.

[24]  Ya-Jun Guo,et al.  Defective TiO2 for Propane Dehydrogenation , 2020 .

[25]  Nadavala Siva Kumar,et al.  Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts , 2020, Catalysts.

[26]  A. K. Nayak,et al.  Effect of Ti/Al ratio on the performance of Ni/TiO2-Al2O3 catalyst for methane reforming with CO2 , 2019, Fuel Processing Technology.

[27]  Jingguang G. Chen,et al.  The effects of bimetallic interactions for CO 2 ‐assisted oxidative dehydrogenation and dry reforming of propane , 2019, AIChE Journal.

[28]  Y. Mok,et al.  Dry Reforming of Propane over γ-Al2O3 and Nickel Foam Supported Novel SrNiO3 Perovskite Catalyst , 2019, Catalysts.

[29]  M. Rønning,et al.  Ce- and Y-Modified Double-Layered Hydroxides as Catalysts for Dry Reforming of Methane: On the Effect of Yttrium Promotion , 2019, Catalysts.

[30]  O. Muraza,et al.  Syngas production from CO2 reforming of methane over Ni supported on hierarchical silicalite-1 fabricated by microwave-assisted hydrothermal synthesis , 2018 .

[31]  M. Fan,et al.  Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds , 2018 .

[32]  Xu Wu,et al.  The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents , 2018, Journal of Solid State Chemistry.

[33]  F. Gallucci,et al.  An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites , 2018 .

[34]  Liang Zeng,et al.  On the role of Ce in CO2 adsorption and activation over lanthanum species , 2018, Chemical science.

[35]  A. Shahbazi,et al.  Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound , 2018 .

[36]  Y. Mok,et al.  Iron–ceria spinel (FeCe2O4) catalyst for dry reforming of propane to inhibit carbon formation , 2017 .

[37]  Kui Xie,et al.  Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures , 2017, Nature Communications.

[38]  G. Pacchioni,et al.  A DFT study of the acid–base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules , 2016 .

[39]  Byung‐Kook Kim,et al.  Density Functional Theory Study for Catalytic Activation and Dissociation of CO2 on Bimetallic Alloy Surfaces , 2016 .

[40]  J. Navarrete,et al.  Boosted surface acidity in TiO 2 and Al 2 O 3 -TiO 2 nanotubes as catalytic supports , 2015 .

[41]  Yatish T. Shah,et al.  Dry Reforming of Hydrocarbon Feedstocks , 2014 .

[42]  J. Lercher,et al.  Tailoring hierarchically structured SiO2 spheres for high pressure CO2 adsorption , 2014 .

[43]  B. M. Reddy,et al.  CO2 promoted oxidative dehydrogenation of n-butane over VOx/MO2–ZrO2 (M = Ce or Ti) catalysts , 2014 .

[44]  R. López,et al.  High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid. , 2013, Journal of hazardous materials.

[45]  A. Adesina,et al.  Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst , 2013 .

[46]  C. Herrera,et al.  CO2-reforming of natural gas components over a highly stable and selective NiMg/Al2O3 nanocatalyst , 2012 .

[47]  T. Cundari,et al.  CO2 Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with Homogeneous Catalysis , 2012 .

[48]  N. Amin,et al.  Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation , 2011 .

[49]  Liang Wang,et al.  Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production , 2010 .

[50]  U. Olsbye,et al.  Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst , 2009 .

[51]  Heechul Choi,et al.  Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process , 2007 .

[52]  C. Mirodatos,et al.  Propane dry reforming to synthesis gas over Ni-based catalysts : Influence of support and operating parameters on catalyst activity and stability , 2007 .

[53]  H. Shinjoh,et al.  Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides , 2007 .

[54]  Weiming Hua,et al.  Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts , 2006 .

[55]  F. Solymosi,et al.  Dry reforming of propane over supported Re catalyst , 2005 .

[56]  R. Gómez,et al.  Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties , 2004 .

[57]  Jae-Woo Kim,et al.  Surface Properties and Catalytic Activity of TiO2–ZrO2 Mixed Oxides in Dehydration of Methanol to Dimethyl Ether , 2004 .

[58]  K. Takanabe,et al.  Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane , 2003 .

[59]  I. Wang,et al.  The Reaction Mechanism of C6Hydrocarbons over Acid–Base Bifunctional Catalysts, TiO2–ZrO2 , 1996 .

[60]  M. Bradford,et al.  Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics , 1996 .

[61]  F. Solymosi,et al.  Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts , 1993 .