Families of ideals in statistics

In this paper we use Grobner basis theory and some methods of Algebraic Geometry to solve a relevant problem in Statistics, more specifically in the Design of Experiments. Namely suppose we are given a Fhll Factorial Design D and a complete polynomial model P, whose support is contained in the order ideal of monomials defined by D. We show how to construct families of ideals defining Fractions ~ of D which are minimally identified by P.

[1]  L. O'carroll AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .

[2]  J. J. Seidel,et al.  Measures of strength $2e$ and optimal designs of degree $e$ , 1992 .

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Lorenzo Robbiano,et al.  On the Theory of Graded Structures , 1986, J. Symb. Comput..

[5]  Henry P. Wynn,et al.  Generalised confounding with Grobner bases , 1996 .

[6]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[7]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[8]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[9]  A. Street,et al.  Combinatorics of experimental design , 1987 .

[10]  Lorenzo Robbiano,et al.  Some Features of CoCoA 3 , 1996, Comput. Sci. J. Moldova.

[11]  Lorenzo Robbiano,et al.  ON SuperG-BASES* , 1990 .

[12]  C. Nachtsheim Orthogonal Fractional Factorial Designs , 1985 .

[13]  Construction of orthogonal two-level designs of user-specified resolution where N≠2 k , 1996 .

[14]  R. A. FISHER,et al.  The Design and Analysis of Factorial Experiments , 1938, Nature.

[15]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[16]  S. M. Lewis,et al.  Orthogonal Fractional Factorial Designs , 1986 .

[17]  Lorenzo Robbiano,et al.  Computing minimal finite free resolutions , 1997 .