Différentes interprétations d'un modèle de RI à base d'inclusion graduelle

Recemment, un modele theorique de RI a base d'inclusion graduelle a ete propose (Bosc et al., 2008b). Dans ce modele, derive de la division de relations floues, l'inclusion gra- duelle d'une requete dans un document est modelisee par une implication floue. Dans des tra- vaux precedents, nous avons montre que ce modele pouvait etre interprete comme un modele vectoriel sous certaines conditions. Dans cet article, nous proposons d'explorer d'autres inter- pretations possibles offertes par la modelisation a base d'inclusion graduelle. Nous montrons notamment qu'il est possible d'interpreter notre systeme flou comme un systeme de RI a base de modeles de langues, et nous revenons sur les liens entre le modele flou et les modeles logiques de RI. Plus generalement, nous essayons de clarifier les liens existants entre ces differents mo- deles, vus sous l'angle de notre SRI flou. RESUME. Recently, a theoretical fuzzy IR system, based on gradual inclusion measures, has been proposed (Bosc et al., 2008b). In this model, derived from the division of fuzzy relations, the gradual inclusion of a query in a document is modeled by a fuzzy implication. In previous papers, we have shown that, under some assumptions, this model can be seen as a Vector Space Model. This paper also studies other itnerpretations of our fuzzy IR models based on gradual inclusions. It is shown that the fuzzy models can be interpreted as language models for IR. The links with logical models to IR are also recalled. More generaly, this paper discusses the links between these models, shown from the angle of our fuzzy models.

[1]  Patrick Bosc,et al.  On a Parameterized Antidivision Operator for Database Flexible Querying , 2008, DEXA.

[2]  Rima Harastani Information Retrieval: From Language Models to Fuzzy Logic , 2010 .

[3]  Vincent Claveau,et al.  Implication in information retrieval systems , 2010, RIAO.

[4]  Virginia R. Young,et al.  Fuzzy subsethood , 1996, Fuzzy Sets Syst..

[5]  Donald H. Kraft,et al.  Threshold values and Boolean retrieval systems , 1981, Inf. Process. Manag..

[6]  Didier Dubois,et al.  Flexible Queries in Relational Databases - The Example of the Division Operator , 1997, Theor. Comput. Sci..

[7]  Hermann Ney,et al.  On structuring probabilistic dependences in stochastic language modelling , 1994, Comput. Speech Lang..

[8]  Vincent Claveau,et al.  Implication-based and cardinality-based inclusions in information retrieval , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[9]  Patrick Bosc,et al.  On the use of tolerant graded inclusions in information retrieval , 2008, CORIA.

[10]  Mohand Boughanem,et al.  Fuzzy Logic and Ontology-based Information Retrieval , 2007 .

[11]  Duncan A. Buell,et al.  An analysis of some fuzzy subset applications to information retrieval systems , 1982 .

[12]  Djoerd Hiemstra,et al.  Twenty-One at TREC7: Ad-hoc and Cross-Language Track , 1998, TREC.

[13]  Donald H. Kraft,et al.  A mathematical model of a weighted boolean retrieval system , 1979, Inf. Process. Manag..

[14]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[15]  Gabriella Pasi,et al.  A logical formulation of the Boolean model and of weighted Boolean models , 2007 .

[16]  Fabrizio Sebastiani,et al.  Trends in ... a Critical Review: On the Role of Logic in Information Retrieval , 1998, Inf. Process. Manag..

[17]  Abraham Bookstein,et al.  Fuzzy requests: An approach to weighted boolean searches , 1980, J. Am. Soc. Inf. Sci..

[18]  Vincent Claveau,et al.  SRI à base d'inclusion graduelle , 2009, CORIA.

[19]  Patrick Bosc,et al.  Characterizing the result of the division of fuzzy relations , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[20]  Mounia Lalmas,et al.  Logical Models in Information Retrieval: Introduction and Overview , 1998, Inf. Process. Manag..

[21]  Vincent Claveau,et al.  Graded-Inclusion-Based Information Retrieval Systems , 2009, ECIR.

[22]  C. J. van Rijsbergen,et al.  A Non-Classical Logic for Information Retrieval , 1997, Comput. J..