A survey on energy-efficient data management

Energy management has now become a critical and urgent issue in green computing. A lot of efforts have been made on energy-efficiency computing at various levels from individual hardware components, system software, to applications. In this paper, we describe the energyefficiency computing problem, as well as possible strategies to tackle the problem. We survey some recently developed energy-saving data management techniques. Benchmarks and power models are described in the end for the evaluation of energy-efficiency solutions.

[1]  Christoforos E. Kozyrakis,et al.  Models and Metrics to Enable Energy-Efficiency Optimizations , 2007, Computer.

[2]  Christoforos E. Kozyrakis,et al.  A Comparison of High-Level Full-System Power Models , 2008, HotPower.

[3]  Mohamed A. Sharaf,et al.  Power-aware operator placement and broadcasting of continuous query results , 2010, MobiDE '10.

[4]  Joongheon Kim,et al.  Energy-efficient rate-adaptive GPS-based positioning for smartphones , 2010, MobiSys '10.

[5]  Richard E. Brown,et al.  Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431 , 2008 .

[6]  Wolf-Dietrich Weber,et al.  Power provisioning for a warehouse-sized computer , 2007, ISCA '07.

[7]  Ki-Hoon Lee,et al.  The ubiquitous DBMS , 2010, SGMD.

[8]  Lizy Kurian John,et al.  Complete System Power Estimation: A Trickle-Down Approach Based on Performance Events , 2007, 2007 IEEE International Symposium on Performance Analysis of Systems & Software.

[9]  Ken C. K. Lee,et al.  A distributed spatial index for error-prone wireless data broadcast , 2009, The VLDB Journal.

[10]  Yon Dohn Chung,et al.  Energy- and Latency-Efficient Processing of Full-Text Searches on a Wireless Broadcast Stream , 2010, IEEE Transactions on Knowledge and Data Engineering.

[11]  Chin-Fu Kuo,et al.  Energy-Efficient Scheduling for Real-Time Systems on Dynamic Voltage Scaling (DVS) Platforms , 2007, 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007).

[12]  Margaret Martonosi,et al.  Run-time power estimation in high performance microprocessors , 2001, ISLPED '01.

[13]  J. Koomey,et al.  Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431: Appendices , 2008 .

[14]  San Murugesan,et al.  Harnessing Green IT: Principles and Practices , 2008, IT Professional.

[15]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[16]  Zichen Xu Building a power-aware database management system , 2010, IDAR '10.

[17]  David J. Brown,et al.  Toward Energy-Efficient Computing , 2010, ACM Queue.

[18]  Ling Liu,et al.  MobiEyes: Distributed Processing of Continuously Moving Queries on Moving Objects in a Mobile System , 2004, EDBT.

[19]  Xiaorui Wang,et al.  Exploring power-performance tradeoffs in database systems , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[20]  Jignesh M. Patel,et al.  Towards Eco-friendly Database Management Systems , 2009, CIDR.

[21]  Christoforos E. Kozyrakis,et al.  JouleSort: a balanced energy-efficiency benchmark , 2007, SIGMOD '07.

[22]  Yi Wang,et al.  A framework of energy efficient mobile sensing for automatic user state recognition , 2009, MobiSys '09.

[23]  Parthasarathy Ranganathan,et al.  Energy Efficiency: The New Holy Grail of Data Management Systems Research , 2009, CIDR.

[24]  Jignesh M. Patel,et al.  Energy management for MapReduce clusters , 2010, Proc. VLDB Endow..

[25]  Christos Kozyrakis,et al.  Full-System Power Analysis and Modeling for Server Environments , 2006 .

[26]  Michael Stumm,et al.  Online performance analysis by statistical sampling of microprocessor performance counters , 2005, ICS '05.

[27]  Raghunath Othayoth Nambiar,et al.  Energy cost, the key challenge of today's data centers: a power consumption analysis of TPC-C results , 2008, Proc. VLDB Endow..

[28]  Edward Y. Chang,et al.  Adaptive stream resource management using Kalman Filters , 2004, SIGMOD '04.

[29]  Youngki Lee,et al.  SeeMon: scalable and energy-efficient context monitoring framework for sensor-rich mobile environments , 2008, MobiSys '08.

[30]  Mahmut T. Kandemir,et al.  Using complete machine simulation for software power estimation: the SoftWatt approach , 2002, Proceedings Eighth International Symposium on High Performance Computer Architecture.

[31]  Mikkel Baun Kjærgaard,et al.  EnTracked: energy-efficient robust position tracking for mobile devices , 2009, MobiSys '09.

[32]  Ricardo Bianchini,et al.  Mercury and freon: temperature emulation and management for server systems , 2006, ASPLOS XII.

[33]  Mario Di Francesco,et al.  Energy conservation in wireless sensor networks: A survey , 2009, Ad Hoc Networks.

[34]  Parthasarathy Ranganathan,et al.  Models and Metrics for Energy-Efficient Computing , 2009, Adv. Comput..

[35]  Mehul A. Shah,et al.  Analyzing the energy efficiency of a database server , 2010, SIGMOD Conference.

[36]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[37]  Beng Chin Ooi,et al.  The Claremont report on database research , 2008, SGMD.

[38]  Thomas F. Wenisch,et al.  PowerNap: eliminating server idle power , 2009, ASPLOS.

[39]  Kushagra Vaid,et al.  Energy benchmarks: a detailed analysis , 2010, e-Energy.

[40]  Jianliang Xu,et al.  Energy efficient index for querying location-dependent data in mobile broadcast environments , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).