ELEMENTAL CYCLES: A Status Report on Human or Natural Dominance

▪ Abstract The modern technological society mobilizes and uses a very large number of materials. These substances are derived from rocks, sediments, and other natural repositories, and most undergo transformation prior to use. A large fraction of the materials is eventually returned to the environment. Natural processes do the same but not necessarily with the same suite of materials. For purposes of better understanding industrial development and potential environmental impact, it is important to know, even approximately, the elemental cycles of all materials potentially useful for modern technology. In this review, we examine and summarize cycle information for 77 of the first 92 elements in the periodic table. Mobilization calculations demonstrate that human activities likely dominate or strongly perturb the cycles of most of the elements other than the alkalis, alkali earths, and halogens. We propose that this pattern is ultimately related to the aqueous solubilities of the predominant chemical forms ...

[1]  Atherton Seidell,et al.  Solubilities of inorganic and organic compounds , 1919 .

[2]  S. C. Lind Solubilities of Inorganic and Metal Organic Compounds, Vol. I. By Atherton Seidell. , 1942 .

[3]  Werner Stumm,et al.  Fresh Water and Ocean. (Book Reviews: Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters) , 1982 .

[4]  E. Goldberg,et al.  Fossil Fuel Combustion and the Major Sedimentary Cycle , 1971, Science.

[5]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[6]  E. Hewitt,et al.  Plant mineral nutrition. , 1974 .

[7]  T. Graedel Chemical compounds in the atmosphere , 1978 .

[8]  M. Meybeck,et al.  Elemental mass-balance of material carried by major world rivers , 1979 .

[9]  F. Mackenzie,et al.  Atmospheric trace metals: global cycles and assessment of man's impact , 1979 .

[10]  R. Kinghorn An introduction to the physics and chemistry of petroleum , 1983 .

[11]  J. Olah Book reviewAquatic chemistry. An introduction emphasizing chemical equilibria in natural waters: W. Stumm and J.J. Morgan. Wiley-Interscience, New York, 1981. xvi + 780 pp., £16.75/US$31.60. ISBN 0-471-04831-3 (hardback) , 1984 .

[12]  W. Meinschein An Introduction to the Physics and Chemistry of Petroleum , 1984 .

[13]  Pamela A. Matson,et al.  HUMAN APPROPRIATION OF THE PRODUCTS OF PHOTOSYNTHESIS , 1986 .

[14]  J. Nriagu,et al.  Quantitative assessment of worldwide contamination of air, water and soils by trace metals , 1988, Nature.

[15]  J. Nriagu Human influence on the global cycling of trace metals , 1990 .

[16]  D. Möller The Na/CL ratio in rainwater and the seasalt chloride cycle , 1990 .

[17]  Dalway J. Swaine,et al.  Trace Elements in Coal , 1990 .

[18]  Paul Bairoch,et al.  World energy production, 1800-1985 =: Production mondiale d'énergie, 1800-1985 , 1991 .

[19]  P. Brunner,et al.  Metabolism of the Anthroposphere , 1991 .

[20]  W. Schlesinger Biogeochemistry: An Analysis of Global Change , 1991 .

[21]  H. Rodhe 4 Modeling Biogeochemical Cycles , 1992 .

[22]  L. Sloss,et al.  Trace elements : emissions from coal combustion and gasification , 1992 .

[23]  K. B. Shedd The materials flow of cobalt in the United States , 1993 .

[24]  T. Llewellyn Cadmium (Materials Flow) , 1994 .

[25]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[26]  William F. Fitzgerald,et al.  The biogeochemical cycling of elemental mercury: Anthropogenic influences☆ , 1994 .

[27]  William R. Moomaw,et al.  Industrial Ecology and Global Change: Contents , 1994 .

[28]  Stephen E. Kesler,et al.  Mineral Resources, Economics, and the Environment , 1994 .

[29]  Thomas G. Spiro,et al.  Industrial Ecology and Global Change: Emissions and Exposure to Metals: Cadmium and Lead , 1994 .

[30]  R. Ayres,et al.  Industrial Ecology and Global Change: Human Impacts on the Carbon and Nitrogen Cycles , 1994 .

[31]  Stephen M. Jasinski,et al.  The materials flow of mercury in the United States , 1995 .

[32]  Yi-Fan Li,et al.  Global budget of trace metal sources , 1995 .

[33]  Thomas E. Graedel,et al.  The Budget and Cycle of Earth's Natural Chlorine , 1996 .

[34]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[35]  Gregg Marland,et al.  A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990 , 1996 .

[36]  John Holmberg,et al.  Socio-ecological Indicators for Sustainability. , 1996 .

[37]  V. Thomas Industrial Ecology: Towards Closing the Materials Cycle , 1997 .

[38]  The industrial ecology of lead and electric vehicles , 1997 .

[39]  Jean-Pierre Blanchet,et al.  Modeling sea‐salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes , 1997 .

[40]  R. Finkelman Trace elements in coal: environmental and health significance. , 1999, Biological trace element research.

[41]  V. Smil PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human Interferences , 2000 .

[42]  R. Guicherit,et al.  Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. , 2000, Environmental pollution.

[43]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[44]  Robert J. Klee,et al.  Getting serious about sustainability. , 2002, Environmental science & technology.

[45]  Helmut Rechberger,et al.  The contemporary European copper cycle: The characterization of technological copper cycles , 2002 .

[46]  W. Schlesinger,et al.  Global biogeochemical cycle of boron , 2002 .

[47]  Helmut Rechberger,et al.  Anthropogenic Metabolism and Environmental Legacies , 2002 .

[48]  Helmut Rechberger,et al.  The contemporary European copper cycle: 1 year stocks and flows , 2002 .

[49]  Thomas E. Graedel,et al.  The magnitude and spatial distribution of in-use copper stocks in Cape Town, South Africa : research article , 2003 .