From skew-cyclic codes to asymmetric quantum codes

We introduce an additive but not F4-linear map S from F n to F2n 4 and exhibit some of its interesting structural properties. If C is a linear (n;k;d)4-code, then S(C) is an additive (2n; 2 2k ; 2d)4-code. If C is an additive cyclic code then S(C) is an additive quasi-cyclic code of index 2. Moreover, if C is a module -cyclic code, a recently introduced type of code which will be explained below, then S(C) is equivalent to an additive cyclic code if n is odd and to an additive quasi-cyclic code of index 2 if n is even. Given any (n;M;d)4-code C, the code S(C) is self-orthogonal under the trace Hermitian inner product. Since the mapping S preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.

[1]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[3]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[4]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[5]  Felix Ulmer,et al.  Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[6]  Patrick Solé,et al.  Additive Asymmetric Quantum Codes , 2011, IEEE Transactions on Information Theory.

[7]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[8]  Markus Grassl,et al.  The Weights in MDS Codes , 2009, IEEE Transactions on Information Theory.

[9]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[10]  Felix Ulmer,et al.  Codes as Modules over Skew Polynomial Rings , 2009, IMACC.

[11]  Gabriele Nebe,et al.  Self-dual codes and invariant theory , 2009, Algebraic Aspects of Digital Communications.

[12]  Jon-Lark Kim,et al.  Designs in Additive Codes over GF(4) , 2003, Des. Codes Cryptogr..

[13]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[14]  Chaoping Xing,et al.  Asymmetric Quantum Codes: Characterization and Constructions , 2010, IEEE Transactions on Information Theory.

[15]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[16]  Jacobus H. van Lint,et al.  Coding Theory , 1971 .

[17]  Emmanuel Abbe Coding Theory , 2020 .