On some fourth-order semilinear elliptic problems in R N

The existence of two solutions for a fourth-order semilinear elliptic problem involving critical growth from the viewpoint of Sobolev embedding was established. The basic tools used in the analysis were the mountain-pass theorem, constrained minimization, and concentration-compactness principle. The existence of positive principle eigenvalues for the corresponding linear elliptic problem was also investigated.

[1]  M. Solomjak,et al.  Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory , 1980 .

[2]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[3]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[4]  Haim Brezis,et al.  Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents Haim Brezis , 2022 .

[5]  W. Allegretto Principal eigenvalues for indefinite-weight elliptic problems in ⁿ , 1992 .

[6]  P. Drábek,et al.  Multiplicity of Positive Solutions for Some Quasilinear Elliptic Equation in RNwith Critical Sobolev Exponent , 1997 .

[7]  J. Chabrowski Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents , 1995 .

[8]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[9]  Klaus Schmitt,et al.  On positive solutions of semilinear elliptic equations , 1987 .

[10]  Gabriella Tarantello,et al.  On semilinear elliptic equations with indefinite nonlinearities , 1993 .

[11]  M. Willem,et al.  Extrema problems with critical Sobolev exponents on unbounded domains , 1996 .

[12]  K. Deimling Nonlinear functional analysis , 1985 .

[13]  Principal eigenvalues for some quasilinear elliptic equations on $\mathbb{R}^N$ , 1997 .

[14]  Francisco Bernis,et al.  Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order , 1996, Advances in Differential Equations.

[15]  B. Hanouzet Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace , 1971 .

[16]  C. Swanson,et al.  Critical semilinear biharmonic equations in RN , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[18]  D. Edmunds,et al.  Critical exponents, critical dimensions and the biharmonic operator , 1990 .

[19]  K. J. Brown,et al.  Global bifurcation results for a semilinear elliptic equation on all of $\mathbb{R}^N$ , 1996 .

[20]  K. J. Brown,et al.  Principal eigenvalues for problems with indefinite weight function on RN , 1990 .

[21]  D. G. Figueiredo,et al.  Lectures on the ekeland variational principle with applications and detours , 1989 .