Review of nanocellulose for sustainable future materials

Cellulose, the chain of glucose residues easily obtained from nature, is the most common natural polymer. Owing to its own unique material properties, compared to the conventional usage, nanocellulose (NC) with a crystalline structure can be considered to be used in various industrial applications. As a novel sustainable future material, we review the recent achievements of NC from the view point of material extraction and the composite processes to some extended important applications. While the mechanical properties of NCs and the energy consumption during their composite processing are the key considerations, their application potentials have never been limited to mechanical or commodity products as conventional celluloses. In the latter part of this review, emerging engineering applications of NCs such as energy storage, flexible electronics, and smart materials will be further discussed for readers searching future high-end eco-friendly functional materials. Also some suggestions for potential applications will be also discussed.

[1]  Sungryul Yun,et al.  A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose , 2007 .

[2]  Sungryul Yun,et al.  Discovery of Cellulose as a Smart Material , 2006 .

[3]  Victor Tan,et al.  Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. , 2012, Carbohydrate polymers.

[4]  M. Drillon,et al.  Magnetically responsive bacterial cellulose: Synthesis and magnetic studies , 2010 .

[5]  Sungryul Yun,et al.  Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor , 2010 .

[6]  Yi Cui,et al.  Nanostructured paper for flexible energy and electronic devices , 2013 .

[7]  Jaehwan Kim,et al.  Effect of hydrophobic ionic liquid loading on characteristics and electromechanical performance of cellulose , 2011 .

[8]  I. Oh,et al.  Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition , 2010 .

[9]  J. Lagarón,et al.  On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid , 2010 .

[10]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[11]  J. Youngblood,et al.  Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites , 2011 .

[12]  Sabu Thomas,et al.  Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites , 1999 .

[13]  P. Barquinha,et al.  High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper , 2008, IEEE Electron Device Letters.

[14]  Lucian A. Lucia,et al.  CELLULOSIC NANOCOMPOSITES: A REVIEW , 2008 .

[15]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[16]  Sun-Young Lee,et al.  Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading , 2009 .

[17]  M. Rosa,et al.  Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. , 2014, Carbohydrate polymers.

[18]  L. Mattoso,et al.  Polyaniline‐modified cellulose nanofibrils as reinforcement of a smart polyurethane , 2011 .

[19]  M. Sain,et al.  Preparation of cellulose-based nano-composite fibers by electrospinning and understanding the effect of processing parameters , 2011 .

[20]  Doo-Man Chun,et al.  Research advancement of green technologies , 2014 .

[21]  Jin-Woo Han,et al.  A carbon nanotube based ammonia sensor on cellulose paper , 2014 .

[22]  Ran Li,et al.  Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films , 2009 .

[23]  Hyun-U Ko,et al.  Electromechanical Behavior of Green Cellulose-ZnO Hybrid Nanocomposite , 2014 .

[24]  H. Yano,et al.  Cellulose nanofiber-reinforced polylactic acid , 2008 .

[25]  S. Barbut,et al.  Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique , 2015 .

[26]  H. Yano,et al.  Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers , 2008 .

[27]  L. Berglund,et al.  Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde , 2007 .

[28]  Nobutsugu Minami,et al.  Highly Sensitive, Room-Temperature Gas Sensors Prepared from Cellulose Derivative Assisted Dispersions of Single-Wall Carbon Nanotubes , 2008 .

[29]  M. Márquez,et al.  Structural studies of electrospun cellulose nanofibers , 2006 .

[30]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[31]  Joo Hyung Kim,et al.  Possibility of cellulose-based electro-active paper energy scavenging transducer. , 2014, Journal of nanoscience and nanotechnology.

[32]  Mohammed Maniruzzaman,et al.  Paper Actuators Made with Cellulose and Hybrid Materials , 2010, Sensors.

[33]  Robin H. A. Ras,et al.  Photoswitchable Superabsorbency Based on Nanocellulose Aerogels , 2011 .

[34]  Levente Csoka,et al.  Piezoelectric Effect of Cellulose Nanocrystals Thin Films. , 2012, ACS macro letters.

[35]  Xiabin Jing,et al.  Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications , 2011 .

[36]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[37]  M. Sain,et al.  Processing of Cellulose Nanofiber-reinforced Composites , 2005 .

[38]  Satoshi Miyaguchi,et al.  Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays , 2009 .

[39]  Sungryul Yun,et al.  Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator , 2008 .

[40]  Jaehwan Kim,et al.  Fabrication and characterization of electro-active cellulose films regenerated by using 1-butyl-3-methylimidazolium chloride ionic liquid , 2013 .

[41]  J. Araki,et al.  Toward "strong" green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. , 2011, Biomacromolecules.

[42]  K. Shanmuganathan,et al.  pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites. , 2012, ACS macro letters.

[43]  Ryota Kose,et al.  "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. , 2011, Biomacromolecules.

[44]  M. Yoshimoto,et al.  Enhanced oxygen barrier property of poly(ethylene oxide) films crystallite-oriented by adding cellulose single nanofibers , 2014 .

[45]  Claudio Gerbaldi,et al.  Cellulose-based Li-ion batteries: a review , 2013, Cellulose.

[46]  M. Henriksson,et al.  Electrospinning of cellulose‐based nanofibers , 2007 .

[47]  Paula A. A. P. Marques,et al.  Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method , 2006 .

[48]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[49]  J. Mano,et al.  Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. , 2006, Macromolecular bioscience.

[50]  Claudio Gerbaldi,et al.  Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent m , 2011 .

[51]  Jaehwan Kim,et al.  Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite , 2011 .

[52]  Jingjing Xu,et al.  Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper , 2011, Advanced materials.

[53]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[54]  S. Nutt,et al.  Characterization of nanocellulose‐ reinforced shape memory polyurethanes , 2008 .

[55]  Jaehwan Kim,et al.  Characterization and electromechanical performance of cellulose–chitosan blend electro-active paper , 2008 .

[56]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[57]  Magnus Bengtsson,et al.  Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites , 2007 .

[58]  Chengjun Zhou,et al.  Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. , 2011, Biomacromolecules.

[59]  Mohini Sain,et al.  Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display , 2012 .

[60]  Lina Zhang,et al.  Effects of cellulose whiskers on properties of soy protein thermoplastics. , 2006, Macromolecular bioscience.

[61]  D. Hon,et al.  Wood and Cellulosic Chemistry , 1990 .

[62]  M. Jonoobi,et al.  Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion , 2010 .

[63]  Amar K. Mohanty,et al.  Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting , 2006 .

[64]  T. Kondo,et al.  Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. , 2014, Carbohydrate polymers.

[65]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[66]  D. Bhattacharyya,et al.  Characterisation of solution cast cellulose nanofibre - reinforced poly(lactic acid) , 2010 .

[67]  Colette Lacabanne,et al.  A capacitive humidity sensor using cross-linked cellulose acetate butyrate , 2005 .

[68]  T. Zimmermann,et al.  Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials , 2012 .

[69]  Qiuju Wu,et al.  A high strength nanocomposite based on microcrystalline cellulose and polyurethane. , 2007, Biomacromolecules.

[70]  Shuwen Hu,et al.  “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications , 2013, Materials.

[71]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[72]  Jaehwan Kim,et al.  Hybrid composite thin films composed of tin oxide nanoparticles and cellulose , 2013 .

[73]  V. Favier,et al.  Mechanical percolation in cellulose whisker nanocomposites , 1997 .

[74]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[75]  M. Nogi,et al.  Optically transparent composites reinforced with plant fiber-based nanofibers , 2005 .

[76]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[77]  Byung‐Dae Park,et al.  Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites , 2011 .

[78]  I. Ahmad,et al.  Cassava starch biocomposites reinforced with cellulose nanocrystals from kenaf fibers , 2013 .

[79]  Jaehwan Kim,et al.  Vibration Sensor Characteristics of Piezoelectric Electro-active Paper , 2010 .

[80]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[81]  Stuart J. Rowan,et al.  Stimuli-responsive mechanically adaptive polymer nanocomposites. , 2010, ACS applied materials & interfaces.

[82]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[83]  M. Agustin,et al.  Bioplastic based on starch and cellulose nanocrystals from rice straw , 2014 .

[84]  Sungryul Yun,et al.  A flexible paper transistor made with aligned single-walled carbon nanotube bonded cellulose composite , 2013 .

[85]  A. Asiri,et al.  Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from aloe vera rind , 2014 .

[86]  D. Hui,et al.  The effects on mechanical properties and crystallization of poly (l‐lactic acid) reinforced by cellulosic fibers with different scales , 2014 .

[87]  Jaehwan Kim,et al.  Piezoelectric electro-active paper (EAPap) speaker , 2011 .

[88]  G. Lindbergh,et al.  ril reinforced composite electrolytes for lithium ion battery applications , 2014 .

[89]  Kristiina Oksman,et al.  Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC) , 2005 .

[90]  R. Bert The New Science of Strong Materials: or Why You Don't Fall through the Floor , 2006 .

[91]  William J. Orts,et al.  Application of Cellulose Microfibrils in Polymer Nanocomposites , 2005 .

[92]  G. Lyons,et al.  Preparation and characterization of Poly(vinyl alcohol) nanocomposites made from cellulose nanofibers , 2009 .

[93]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[94]  Xuezhu Xu,et al.  Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures , 2014 .

[95]  Jaehwan Kim,et al.  Wirelessly driven electro-active paper actuator made with cellulose–polypyrrole–ionic liquid and dipole rectenna , 2010 .

[96]  Charles L. McCormick,et al.  Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide , 1985 .

[97]  Huafeng Tian,et al.  Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites , 2013, Cellulose.

[98]  Dong Chen,et al.  Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. , 2009, Colloids and surfaces. B, Biointerfaces.

[99]  M. Sain,et al.  Nanocellulose from Curava Fibers and their Nanocomposites , 2010 .

[100]  Zhenghe Xu,et al.  Synthesis of Interfacially Active and Magnetically Responsive Nanoparticles for Multiphase Separation Applications , 2012 .

[101]  T. Kondo,et al.  Switching Surface Properties of Substrates by Coating with a Cellulose Nanofiber Having a High Adsorbability , 2011 .

[102]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[103]  E. Fortunato,et al.  Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors , 2014, Nanotechnology.

[104]  A. Dufresne Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals , 2010, Molecules.

[105]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[106]  Jaehwan Kim,et al.  Fabrication and testing of cellulose EAPap actuators for haptic application , 2010 .

[107]  A. N. Nakagaito,et al.  Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites , 2006 .

[108]  P. Gatenholm,et al.  Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility , 2012, Cellulose.

[109]  Jaehwan Kim,et al.  Remotely powered and controlled EAPap actuator by amplitude modulated microwaves , 2012 .

[110]  N. Kotov,et al.  Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. , 2005, Biomacromolecules.

[111]  J. Vleugels,et al.  Toughness enhancement of Ce-TZP by annealing in argon , 2004 .

[112]  D. Ryan,et al.  Characterization of magnetic membranes based on bacterial and man-made cellulose , 1998 .

[113]  Zhijun Shi,et al.  Nanocellulose electroconductive composites. , 2013, Nanoscale.

[114]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[115]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[116]  A. Netravali,et al.  Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin , 2009 .

[117]  Mahnaz M. Abdi,et al.  A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion , 2012, Journal of Polymers and the Environment.

[118]  Stuart J. Rowan,et al.  Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers , 2010 .

[119]  Tara H McHugh,et al.  Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. , 2010, Journal of food science.