Optical and X-ray early follow-up of ANTARES neutrino alerts

High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

A. Heijboer | N. Gehrels | M. Boer | D. Coward | A. Trovato | G. Anton | U. Katz | M. Tselengidou | J. Osborne | S. Basa | A. L. V. Suu | P. Gay | A. Capone | Y. Hello | A. Deschamps | J. Carr | P. Coyle | B. Vallage | J. Zúñiga | M. Circella | C. Vallée | C. Tamburini | A. Klotz | G. Lambard | J. Kennea | W. Zheng | D. Dornic | V. Kulikovskiy | B. Baret | A. Herrero | G. Riccobene | D. Lefèvre | J. Brunner | V. Bertin | L. Caramete | J. Hernández-Rey | C. Racca | M. Ageron | R. Lahmann | P. Kooijman | S. Loucatos | A. Mathieu | C. Akerlof | S. Biagi | R. Bruijn | A. Albert | J. Aubert | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | M. Jong | A. Kouchner | M. Marcelin | A. Margiotta | E. Nezri | P. Piattelli | V. Popa | T. Pradier | A. Rostovtsev | P. Sapienza | M. Spurio | T. Stolarczyk | M. Taiuti | J. Zornoza | G. Bonis | T. Chiarusi | K. Geyer | F. Schüssler | E. Leonora | V. Elewyck | G. Pǎvǎlaş | M. Vecchi | M. Kadler | F. Folger | H. Costantini | M. Neff | J. Busto | T. Eberl | R. Richter | S. Mangano | I. Kreykenbohm | J. Martínez-Mora | K. Roensch | M. Ardid | J. Wilms | M. Bou-Cabo | O. Kalekin | C. Donzaud | H. Haren | J. Steijger | D. Lattuada | S. Wagner | V. Giordano | T. Seitz | D. Samtleben | A. Enzenhöfer | S. Adrián-Martínez | A. Creusot | D. Drouhin | A. Gleixner | P. Migliozzi | J. Schmid | J. Schnabel | D. Vivolo | P. Evans | M. André | J. Barrios-Martí | R. Bormuth | D. Elsässer | K. Fehn | I. Felis | L. Fusco | S. Galata | S. Geißelsöder | R. Gracia-Ruiz | H. van Haren | J. Hofestädt | C. Hugon | C. James | M. de Jong | D. Kiessling | T. Michael | A. Moussa | C. Mueller | C. Pellegrino | C. Perrina | M. Saldaña | M. Sanguineti | C. Sieger | A. Sánchez-Losa | D. Turpin | C. Tönnis | V. Van Elewyck | A. Dumas | S. Martini | S. Schulte | I. Dekeyser | C. Bogazzi | I. Al Samarai | J. Wilms | M. Boër | P. Fermani | W. Zheng | E. Visser | A. Capone | Cornelia Mueller | J. Hössl | I. A. Samarai | A. Le Van Suu | M. André | D. Lefèvre | C. James | S. Wagner

[1]  D. Palmer,et al.  Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era , 2015, 1501.04435.

[2]  P. O. Hulth,et al.  SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE , 2014, The Astrophysical Journal.

[3]  Bing Zhang,et al.  The physics of gamma-ray bursts & relativistic jets , 2014, 1410.0679.

[4]  D. Götz,et al.  The microchannel x-ray telescope for the gamma-ray burst mission SVOM , 2014, Astronomical Telescopes and Instrumentation.

[5]  D. Guetta,et al.  CONSTRAINTS ON THE HADRONIC CONTENT OF GAMMA RAY BURSTS , 2014, 1407.0155.

[6]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[7]  A. Heijboer,et al.  SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE , 2014, 1402.6182.

[8]  A. Heijboer,et al.  A search for time dependent neutrino emission from microquasars with the ANTARES telescope , 2014, 1402.1600.

[9]  P. M'esz'aros,et al.  Gamma–ray bursts: Recent results and connections to very high energy cosmic rays and neutrinos , 2012, 1209.2436.

[10]  J. P. Osborne,et al.  1SXPS: A DEEP SWIFT X-RAY TELESCOPE POINT SOURCE CATALOG WITH LIGHT CURVES AND SPECTRA , 2013, 1311.5368.

[11]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[12]  A. Heijboer,et al.  Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data , 2013, 1307.0304.

[13]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[14]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[15]  J. P. Osborne,et al.  The Chinese-French SVOM Mission: studying the brightest astronomical explosions , 2012, Other Conferences.

[16]  A. Heijboer,et al.  SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE , 2012, 1207.3105.

[17]  W. Winter,et al.  Neutrino emission from gamma-ray burst fireballs, revised. , 2011, Physical review letters.

[18]  P. O. Hulth,et al.  Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program , 2011, 1111.7030.

[19]  F. T. Collaboration,et al.  Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope , 2011, Astroparticle Physics.

[20]  A. Heijboer,et al.  The ANTARES telescope neutrino alert system , 2011, 1103.4477.

[21]  V. Lipunov,et al.  MASTER global robotic net , 2012 .

[22]  A. Burrows Perspectives on Core-Collapse Supernova Theory , 2012 .

[23]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[24]  O. Ilbert,et al.  LePHARE: Photometric Analysis for Redshift Estimate , 2011 .

[25]  S. Cecchini,et al.  FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE , 2011, 1108.0292.

[26]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[27]  A. Heijboer,et al.  A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope , 2011, 1105.4116.

[28]  V. S. Dhillon,et al.  A list of galaxies for gravitational wave searches , 2011, 1103.0695.

[29]  A. Klotz,et al.  The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education , 2010, Publications of the Astronomical Society of Australia.

[30]  J. Chiang,et al.  GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS , 2010, 1004.0348.

[31]  F. Spanier,et al.  SIMPLIFIED MODELS FOR PHOTOHADRONIC INTERACTIONS IN COSMIC ACCELERATORS , 2010, 1002.1310.

[32]  T. Montaruli,et al.  In Search of Extraterrestrial High-Energy Neutrinos , 2009, 0912.1035.

[33]  Artem Kuznetsov,et al.  Master Robotic Net , 2010 .

[34]  J. P. Osborne,et al.  The unusual 2006 dwarf nova outburst of GK Persei , 2009, 0907.1407.

[35]  M. Spurio,et al.  High-energy astrophysics with neutrino telescopes , 2009, 0906.2634.

[36]  B. Gendre,et al.  EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001–2008 , 2009, 0902.0898.

[37]  J. P. Osborne,et al.  Accurate early positions for Swift GRBs: enhancing X-ray positions with UVOT astrometry , 2007, 0708.0986.

[38]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[39]  Bing Zhang Gamma-Ray Bursts in the Swift Era , 2007, astro-ph/0701520.

[40]  P. O. Hulth,et al.  First year performance of the IceCube neutrino telescope , 2006 .

[41]  Eric Bertin,et al.  Automatic Astrometric and Photometric Calibration with SCAMP , 2006 .

[42]  E. Rykoff,et al.  A Search for Untriggered GRB Afterglows with ROTSE-III , 2005, astro-ph/0506442.

[43]  J. Beacom,et al.  Revealing the supernova-gamma-ray burst connection with TeV neutrinos. , 2005, Physical review letters.

[44]  Norbert Zacharias,et al.  The Naval Observatory Merged Astrometric Dataset (NOMAD) , 2004 .

[45]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[46]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[47]  C. Dermer,et al.  High-energy neutrinos from gamma ray bursts. , 2003, Physical review letters.

[48]  E. Waxman,et al.  High energy neutrinos from gamma-ray bursts with precursor supernovae. , 2002, Physical review letters.

[49]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[50]  E. Waxman,et al.  TeV neutrinos from successful and choked gamma-ray bursts. , 2001, Physical review letters.

[51]  E. Waxman,et al.  On the Neutrino Flux from Gamma-Ray Bursts , 2001, astro-ph/0104045.

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  T. Takeshima,et al.  The GRB coordinates network (GCN): A status report , 1998 .

[54]  J. Bahcall,et al.  HIGH ENERGY NEUTRINOS FROM COSMOLOGICAL GAMMA-RAY BURST FIREBALLS , 1997, astro-ph/9701231.

[55]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[56]  T. Boller,et al.  THE ROSAT ALL-SKY SURVEY BRIGHT SOURCE CATALOGUE , 1996, astro-ph/9909315.

[57]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[58]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[59]  David L. Crawford,et al.  Instrumentation in Astronomy VI , 1986 .

[60]  I. perrib,et al.  Swift-XRT imaging ' performances and serendipitous survey , 2022 .