Upconverting luminescent nanomaterials: application to in vivo bioimaging.

In this report, the development of multi-channel anti-Stokes luminescent Y2O3 nanoparticles for application to in vivo upconversion imaging is detailed.

[1]  Tymish Y. Ohulchanskyy,et al.  High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. , 2008, Nano letters.

[2]  Yong Zhang,et al.  Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. , 2008, Biomaterials.

[3]  Shuming Nie,et al.  Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. , 2008, Journal of the American Chemical Society.

[4]  Yu Saito,et al.  Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Tero Soukka,et al.  Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. , 2008, Angewandte Chemie.

[6]  Yong Zhang,et al.  Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. , 2008, Biomaterials.

[7]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[8]  J. Schwartz,et al.  Surface modification of Y2O3 nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  M. Blanchard‐Desce,et al.  Quenching of molecular fluorescence on the surface of monolayer-protected gold nanoparticles investigated using place exchange equilibria. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[10]  M. Haase,et al.  Lanthanide-Doped NaYF4 Nanocrystals in Aqueous Solution Displaying Strong Up-Conversion Emission , 2007 .

[11]  T. Soukka,et al.  Upconversion fluorescence enables homogeneous immunoassay in whole blood. , 2007, Clinical chemistry.

[12]  David Schubert,et al.  Cerium and yttrium oxide nanoparticles are neuroprotective. , 2006, Biochemical and biophysical research communications.

[13]  Nora Khanarian,et al.  In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. , 2006, Nano letters.

[14]  K. Uvdal,et al.  Surface interactions between Y2O3 nanocrystals and organic molecules—an experimental and quantum-chemical study , 2005 .

[15]  Elizabeth L. Bentzen,et al.  Surface modification to reduce nonspecific binding of quantum dots in live cell assays. , 2005, Bioconjugate chemistry.

[16]  K. Uvdal,et al.  Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. , 2005, Journal of colloid and interface science.

[17]  H. Tanke,et al.  Infrared up-converting phosphors for bioassays. , 2005, IEE proceedings. Nanobiotechnology.

[18]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[19]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[20]  A. Speghini,et al.  Effect of Yb3+ Codoping on the Upconversion Emission in Nanocrystalline Y2O3:Er3+ , 2003 .

[21]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[22]  Ralph Weissleder,et al.  Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. , 2002, Bioconjugate chemistry.

[23]  S. Jockusch,et al.  Spectroscopic Probe of the Surface of Iron Oxide Nanocrystals , 2002 .

[24]  R. Palmer,et al.  Cytotoxicity of the rare earth metals cerium, lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary macrophage primary culture system. , 1987, Environmental research.