Radiative forcing from the 1991 Mount Pinatubo volcanic eruption

Volcanic sulfate aerosols in the stratosphere produce significant long-term solar and infrared radiative perturbations in the Earth's atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral-, space-, and time-dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS-retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.

[1]  Arlin J. Krueger,et al.  Global tracking of the SO2 clouds from the June , 1992 .

[2]  W. Gates AMIP: The Atmospheric Model Intercomparison Project. , 1992 .

[3]  M. P. McCormick,et al.  Stratospheric temperature increases due to Pinatubo aerosols , 1992 .

[4]  D. Huffman,et al.  Measurements of the aerosol size distributions in the El Chichon cloud , 1983 .

[5]  L. W. Sterritt,et al.  The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experiment description and performance , 1993 .

[6]  P. Pilewskie,et al.  Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data , 1993 .

[7]  M. McCormick,et al.  An Estimation of the Radiative Effect in the Stratosphere due to the Pinatubo Aerosol , 1996 .

[8]  M. P. McCormick,et al.  Temperature effects on the stratosphere of the April 4, 1982 eruption of El Chichon, Mexico , 1983 .

[9]  M. Giorgetta,et al.  The water vapour continuum and its representation in ECHAM4 , 1995 .

[10]  D. Hofmann,et al.  Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon , 1983 .

[11]  D. Randall,et al.  Effects of surface temperature and clouds on the CO2 forcing , 1991 .

[12]  Bryan J. Johnson,et al.  Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyomi , 1992 .

[13]  P. B. Russell,et al.  Physical and optical properties of the Pinatubo volcanic aerosol: Aircraft observations with impactors and a Sun‐tracking photometer , 1994 .

[14]  L. Froidevaux,et al.  Residual Circulation in the Stratosphere and Lower Mesosphere as Diagnosed from Microwave Limb Sounder Data , 1996 .

[15]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[16]  A. Ansmann,et al.  Pinatubo aerosol and stratospheric ozone reduction: Observations over central Europe , 1996 .

[17]  H. Jäger,et al.  Ground‐based remote sensing of the decay of the Pinatubo eruption cloud at three northern hemisphere sites , 1995 .

[18]  M. T. Osborn,et al.  Airborne lidar observations of the Pinatubo volcanic plume , 1992 .

[19]  A. Strong,et al.  Comparing stratospheric aerosols from El Chichón and Mount Pinatubo using AVHRR data , 1993 .

[20]  Terry Deshler,et al.  Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements , 1995 .

[21]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[22]  J. Joseph,et al.  The delta-Eddington approximation for radiative flux transfer , 1976 .

[23]  1. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the northern hemisphere from a network of ship‐borne and stationary lidars , 1993 .

[24]  C. N. Davies Size distribution of atmospheric particles , 1974 .

[25]  Bryan J. Johnson,et al.  Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility , 1993 .

[26]  Jean-Jacques Morcrette,et al.  Pressure and temperature dependence of the absorption in longwave radiation parameterizations , 1986 .

[27]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .

[28]  R. McKenzie,et al.  Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres , 1994 .

[29]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[30]  L. Bengtsson,et al.  Toward monitoring the tropospheric temperature by means of a general circulation model , 1997 .

[31]  M. Chou,et al.  A Solar Radiation Model for Use in Climate Studies , 1992 .

[32]  J. Hansen,et al.  Climate forcing by stratospheric aerosols , 1992 .

[33]  K. Snetsinger,et al.  Evolution of Pinatubo aerosol near 19 km altitude over western North America , 1994 .

[34]  A. Lambert,et al.  Stratospheric aerosol effective radius, surface area and volume estimated from infrared measurements , 1995 .

[35]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.

[36]  P. Di Girolamo,et al.  Lidar observations of the stratospheric aerosol layer over southern Italy in the period 1991–1995 , 1996 .

[37]  Robert E. Veiga,et al.  SAGE II measurements of early Pinatubo aerosols , 1992 .

[38]  K. Snetsinger,et al.  Black carbon (soot) aerosol in the lower stratosphere and upper troposphere , 1992 .

[39]  Properties and decay of stratospheric aerosols in the Arctic following the 1991 eruptions of Mount Pinatubo , 1993 .

[40]  J. Antuña Mount Pinatubo Stratospheric Aerosol Decay During 1992 and 1993, as seen by the Camaguey Lidar Station , 1996 .

[41]  E. Dutton,et al.  SOLAR RADIATIVE FORCING AT SELECTED LOCATIONS AND EVIDENCE FOR GLOBAL LOWER TROPOSPHERIC COOLING FOLLOWING THE ERUPTIONS OF EL , 1992 .

[42]  L. Poole,et al.  Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data , 1994 .

[43]  A. Mecherikunnel,et al.  The Earth Radiation Budget Experiment , 1988 .

[44]  J. Deluisi,et al.  Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992 , 1994 .

[45]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[46]  M. Patrick McCormick,et al.  The poleward dispersal of Mount Pinatubo volcanic aerosol , 1993 .

[47]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[48]  M. Chanin,et al.  2. Morphology and dynamics of the Pinatubo aerosol layer in the northern hemisphere as detected from a ship-borne lidar , 1993 .

[49]  Anthony J. Baran,et al.  New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption , 1994 .

[50]  K. Kodera Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter , 1994 .

[51]  J. Perlwitz,et al.  The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter , 1995 .

[52]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[53]  K. Kodera,et al.  A possible influence of recent polar stratospheric coolings on the troposphere in the northern hemisphere winter , 1994 .

[54]  James M. Russell,et al.  Evolution of the infrared properties of the Mount Pinatubo aerosol cloud over Laramie, Wyoming , 1996 .

[55]  M. McCormick,et al.  High-Latitude Stratospheric Aerosols Measured by the SAM II Satellite System in 1978 and 1979 , 1981, Science.

[56]  M. Prather,et al.  Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo Case Study , 1992 .

[57]  L. Stowe,et al.  Cloud and aerosol products at NOAA/NESDIS , 1991 .

[58]  A. Robock,et al.  Surface Air Temperature Simulations by AMIP General Circulation Models: Volcanic and ENSO Signals and Systematic Errors , 1998 .

[59]  Michael D. King,et al.  Comparative accuracy of selected multiple scattering approximations , 1986 .

[60]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[61]  Andrea Molod,et al.  Technical report series on global modeling and data assimilation. Volume 1: Documentation of the Goddard Earth Observing System (GEOS) General Circulation Model, version 1 , 1994 .

[62]  Kent F. Parmer OPTICAL CONSTANTS OF SULFURIC ACID , 1974 .

[63]  N T Stephens,et al.  Atmospheric Aerosols , 1969, Science.

[64]  Four-Stream Spherical Harmonic Expansion Approximation for Solar Radiative Transfer , 1996 .

[65]  John C. Gille,et al.  Validation studies using multiwavelength Cryogenic Limb Array Etalon Spectrometer (CLAES) observations of stratospheric aerosol , 1996 .

[66]  J. Wolf,et al.  Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE , 1994 .

[67]  Steven Ryan,et al.  Early lidar observations of the June 1991 Pinatubo eruption plume at Mauna Loa Observatory, Hawaii , 1992 .

[68]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[69]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[70]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[71]  Ellis E. Remsberg,et al.  Optical constants for sulfuric and nitric acids , 1974 .

[72]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[73]  L. Thomason,et al.  A comparison of the stratospheric aerosol background periods , 1997 .

[74]  Jianping Mao,et al.  Winter warming from large volcanic eruptions , 1992 .

[75]  P. Minnis,et al.  Radiative Climate Forcing by the Mount Pinatubo Eruption , 1993, Science.

[76]  Larry W. Thomason,et al.  Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses , 1996 .

[77]  A. Lacis,et al.  A general circulation model (GCM) parameterization of Pinatubo aerosols , 1996 .

[78]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[79]  Francisco P. J. Valero,et al.  Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud‐derived particle sizes, columnar mass loadings, and effects on planetary albedo , 1992 .

[80]  M. P. McCormick,et al.  Sage II: An overview , 1987 .

[81]  K. Snetsinger,et al.  Effect of the eruption of El Chichon on stratospheric aerosol size and composition , 1983 .

[82]  P. Bhartia,et al.  Properties of Mount Pinatubo aerosols as derived from Nimbus 7 total ozone mapping spectrometer measurements , 1995 .

[83]  J. Angell,et al.  Comparison of stratospheric warmings following Agung and Chichon , 1983 .

[84]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[85]  M. Chou,et al.  Technical report series on global modeling and data assimilation. Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models , 1994 .

[86]  I. Kirchner,et al.  Volcanos and El Niño: signal separation in Northern Hemisphere winter , 1995 .

[87]  Larry W. Thomason,et al.  A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements , 1991 .

[88]  Aidan E. Roche,et al.  Validation of aerosol measurements from the improved stratospheric and mesospheric sounder , 1996 .

[89]  J. Hansen,et al.  GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations , 1993 .

[90]  A. Robock,et al.  Pinatubo eruption winter climate effects: model versus observations , 1993 .

[91]  S. Massie,et al.  Global evolution of the Mt. Pinatubo volcanic aerosols observed by the infrared limb‐sounding instruments CLAES and ISAMS on the Upper Atmosphere Research Satellite , 1997 .

[92]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[93]  Jianping Mao,et al.  The Volcanic Signal in Surface Temperature Observations. , 1995 .

[94]  Robert E. Veiga,et al.  Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo , 1992 .

[95]  M. Chou,et al.  Technical report series on global modeling and data assimilation. Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models , 1994 .

[96]  Inez Y. Fung,et al.  Global climate changes as forecast by Goddard Institute for Space Studies three‐dimensional model , 1988 .

[97]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[98]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[99]  J. Angell,et al.  Comparison of stratospheric warming following Agung, El Chichon and Pinatubo volcanic eruptions , 1993 .