DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil

Background and aims: Considering the promising use of DNA barcoding for species identification, the importance of the freshwater fish fauna of the Paraíba do Sul River Basin, and its advanced stage of degradation, the present study evaluated the effectiveness of DNA barcoding to identify the fish species in this basin. Materials and methods: A total of 295 specimens representing 58 species belonging to 40 genera, 17 families, and 5 orders were sequenced. Results: The DNA barcodes discriminated all species analyzed without ambiguity. The results showed a pronounced difference between conspecific and congeneric pair-wise sequence comparisons, demonstrating the existence of a “barcode gap” for the species analyzed. The nearest-neighbor distance analysis showed only three cases with Kimura two-parameter values lower than a 2% divergence threshold. However, the patterns of divergence observed in each case remained sufficient to discriminate each species, revealing the accuracy of DNA barcoding even cases with relatively low genetic divergence. At the other extreme, three species displayed high genetic sequence divergence among conspecifics. For two cases, Characidium alipioi and Geophagus proximus, barcoding proved effective at flagging possible new species. For another case, Astyanax bimaculatus, the use of DNA barcoding of the comparison of shared freshwater fish fauna between different basins revealed itself as highly useful in disclosing that the previously identified A. bimaculatus “cluster A” probably represents the species Astyanax altiparanae. Conclusion: The present study is among the first to assess the efficiency of barcoding for the Brazilian freshwater fishes. The results demonstrate the utility of barcoding to identify the fauna from this basin, contribute to an enhanced understanding of the differentiation among species, and to help flag the presence of overlooked species.

[1]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[2]  Josino Costa Moreira,et al.  DNA barcoding for conservation and management of Amazonian commercial fish. , 2010 .

[3]  L. Bernatchez,et al.  DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts , 2010, Molecular ecology resources.

[4]  E. Prince,et al.  Effects of species misidentification on population assessment of overfished white marlin Tetrapturus albidus and roundscale spearfish T. georgii , 2009 .

[5]  R. Ward DNA barcode divergence among species and genera of birds and fishes , 2009, Molecular ecology resources.

[6]  C. Oliveira,et al.  New species of Moenkhausia Eigenmann, 1903 (Characiformes: Characidae) with comments on the Moenkhausia oligolepis species complex , 2009 .

[7]  F. Foresti,et al.  Identification of the shark species Rhizoprionodon lalandii and R. porosus (Elasmobranchii, Carcharhinidae) by multiplex PCR and PCR‐RFLP techniques , 2009, Molecular ecology resources.

[8]  R. Hanner,et al.  The campaign to DNA barcode all fishes, FISH-BOL. , 2009, Journal of fish biology.

[9]  P. Hebert,et al.  Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. , 2009, Journal of fish biology.

[10]  I. Doadrio,et al.  Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies , 2008, BMC Evolutionary Biology.

[11]  L. Vigliola,et al.  Cytochrome b barcoding, molecular systematics and geographic differentiation in rabbitfishes (Siganidae). , 2008, Comptes rendus biologies.

[12]  R. Hanner,et al.  Morphological and molecular evidence for a new species of longnose skate (Rajiformes: Rajidae: Dipturus) from Argentinean waters based on DNA barcoding , 2008 .

[13]  K. Seifert,et al.  Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States , 2008, Persoonia.

[14]  N. Mandrak,et al.  Identifying Canadian Freshwater Fishes through DNA Barcodes , 2008, PloS one.

[15]  J. David,et al.  DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus , 2008, Molecular ecology resources.

[16]  A. Bortolus,et al.  Error Cascades in the Biological Sciences: The Unwanted Consequences of Using Bad Taxonomy in Ecology , 2008, Ambio.

[17]  R. Ward,et al.  DNA barcoding reveals a likely second species of Asian sea bass (barramundi) (Lates calcarifer) , 2008 .

[18]  D. Gledhill,et al.  A new handfish, Brachionichthys australis sp. nov. (Lophiiformes: Brachionichthyidae), with a redescription of the critically endangered spotted handfish, B. hirsutus (Lacepede) , 2007 .

[19]  H. Shaffer,et al.  Delimiting species in recent radiations. , 2007, Systematic biology.

[20]  Gary R Carvalho,et al.  The Barcode of Life Initiative: synopsis and prospective societal impacts of DNA barcoding of Fish , 2007, Genomics, society, and policy.

[21]  Gary R Carvalho,et al.  The Barcode of Life Initiative: Reply to Dupré, Hollingsworth and Holm , 2007, Genomics, society, and policy.

[22]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[23]  B. Victor Coryphopterus kuna , a new goby (Perciformes: Gobiidae: Gobiinae) from the western Caribbean, with the identification of the late larval stage and an estimate of the pelagic larval duration , 2007 .

[24]  M. Nishida,et al.  DNA sequences identify numerous cryptic species of the vertebrate: a lesson from the gobioid fish Schindleria. , 2007, Molecular phylogenetics and evolution.

[25]  Natalia Ivanova,et al.  Universal primer cocktails for fish DNA barcoding , 2007 .

[26]  Mehrdad Hajibabaei,et al.  Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring , 2007, BMC Biology.

[27]  W. Junk Freshwater fishes of South America: Their biodiversity, fisheries, and habitats—a synthesis , 2007 .

[28]  D. Paugy,et al.  Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna , 2007, Molecular ecology.

[29]  A. Sehara-Fujisawa,et al.  Bmc Biology the Vertebrate Phylotypic Stage and an Early Bilaterian-related Stage in Mouse Embryogenesis Defined by Genomic Information , 2007 .

[30]  Jeremy R. deWaard,et al.  An inexpensive, automation-friendly protocol for recovering high-quality DNA , 2006 .

[31]  P. Hebert,et al.  DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation , 2006, Molecular ecology.

[32]  N. Menezes,et al.  Fishes of the Atlantic Rainforest of Boraceia: testimonies of the Quaternary fault reactivation within a Neoproterozoic tectonic province in Southeastern Brazil , 2006 .

[33]  G. K. Yearsley Urolophus kapalensis sp. nov., a new stingaree (Myliobatiformes: Urolophidae) off eastern Australia , 2006 .

[34]  Paul D N Hebert,et al.  DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Araújo,et al.  Diversidade das assembléias de peixes nas quatro unidades geográficas do rio Paraíba do Sul , 2005 .

[36]  R. Mcewing,et al.  Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. , 2005, Toxicon : official journal of the International Society on Toxinology.

[37]  E. Bermingham,et al.  Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny. , 2005, Molecular phylogenetics and evolution.

[38]  R. Ward,et al.  DNA barcoding Australia's fish species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Sujeevan Ratnasingham,et al.  Critical factors for assembling a high volume of DNA barcodes , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  M. G. Carvalho,et al.  Structure and composition of the stream ichthyofauna of four tributary rivers of the upper Rio Parana basin, Brazil , 2005 .

[41]  K. de Queiroz,et al.  Ernst Mayr and the modern concept of species , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Burgess CHECK LIST OF THE FRESHWATER FISHES OF SOUTH AND CENTRAL AMERICA , 2004, Copeia.

[44]  J. Montoya-Burgos Historical biogeography of the catfish genus Hypostomus (Siluriformes: Loricariidae), with implications on the diversification of Neotropical ichthyofauna , 2003, Molecular ecology.

[45]  E. Bermingham,et al.  Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. , 2002, Molecular phylogenetics and evolution.

[46]  P. Fuerst,et al.  Evidence for a slowed rate of molecular evolution in the order acipenseriformes. , 2002, Molecular biology and evolution.

[47]  A. Solé-Cava,et al.  A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analyses , 2000 .

[48]  A. Solé-Cava,et al.  Genetic evaluation of the taxonomic status of two varieties of the cosmopolitan Ascidian Botryllus niger (Ascidiaceae : Botryllidae) , 1991 .

[49]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[50]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[51]  C. Baker,et al.  A SIBLING SPECIES OF SEA CUCUMBER DISCOVERED BY STARCH GEL ELECTROPHORESIS. , 1963, Comparative biochemistry and physiology.

[52]  Brian D. Greene,et al.  Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific , 2008 .

[53]  P. J. Smith,et al.  DNA barcoding discriminates spurdogs of the genus Squalus , 2007 .

[54]  L. Casatti,et al.  Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras , 2007 .

[55]  Naércio A. Menezes,et al.  Catálogo das espécies de peixes de água doce do Brasil , 2007 .

[56]  S. Ratnasingham,et al.  BOLD : The Barcode of Life Data System (www.barcodinglife.org) , 2007 .

[57]  L. Casatti,et al.  Estrutura e composição da ictiofauna de riachos da bacia do Rio Grande no estado de São Paulo, sudeste do Brasil , 2004 .

[58]  A. Peterson,et al.  Geographic variation in the rosy thrush-tanager (rhodinocichla rosea) complex of mesoamerica (aves: passeriformes) , 2004 .

[59]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[60]  R. Reis,et al.  Check list of the freshwater fishes of South and Central America , 2003 .

[61]  L. Casatti,et al.  ESTRUTURA E COMPOSIÇÃO DA ICTIOFAUNA DE RIACHOS DO RIO PARANAPANEMA, SUDESTE E SUL DO BRASIL , 2003 .

[62]  C. E. D. Bicudo,et al.  Genus Octacanthium (Zygnemaphyceae, Desmidiaceae) in the State of São Paulo, Brazil , 2003 .

[63]  C. Moysés,et al.  Restriction fragment length polymorphisms of mitochondrial DNA among five freshwater fish species of the genus Astyanax (Pisces, Characidae) , 2002 .

[64]  C. Ferraris Phylogeny and Classification of Neotropical Fishes , 2000, Copeia.