Joint iterative decoding of LDPC codes for channels with memory and erasure noise

This paper investigates the joint iterative decoding of low-density parity-check (LDPC) codes and channels with memory. Sequences of irregular LDPC codes are presented that achieve, under joint iterative decoding, the symmetric information rate of a class of channels with memory and erasure noise. This gives proof, for the first time, that joint iterative decoding can be information rate lossless with respect to maximum-likelihood decoding. These results build on previous capacity-achieving code constructions for the binary erasure channel. A two state intersymbol-interference channel with erasure noise, known as the dicode erasure channel, is used as a concrete example throughout the paper.

[1]  Hans-Andrea Loeliger,et al.  On the information rate of binary-input channels with memory , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[2]  E. Gilbert Capacity of a burst-noise channel , 1960 .

[3]  Jing Li,et al.  On the performance of high-rate TPC/SPC codes and LDPC codes over partial response channels , 2002, IEEE Trans. Commun..

[4]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[5]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[6]  Paul H. Siegel,et al.  On near-capacity coding systems for partial-response channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[7]  Walter Hirt Capacity and information rates of discrete-time channels with memory , 1988 .

[8]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Aleksandar Kavcic,et al.  Optimized low-density parity-check codes for partial response channels , 2003, IEEE Communications Letters.

[11]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[12]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[13]  Wei Zeng,et al.  Simulation-Based Computation of Information Rates for Channels With Memory , 2006, IEEE Transactions on Information Theory.

[14]  Paul H. Siegel,et al.  On the achievable information rates of finite state ISI channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[15]  Paul H. Siegel,et al.  Joint Iterative Decoding of LDPC Codes and Channels with Memory , 2007 .

[16]  Paul H. Siegel,et al.  Determining and Approaching Achievable Rates of Binary Intersymbol Interference Channels Using Multistage Decoding , 2007, IEEE Transactions on Information Theory.

[17]  Xiao Ma,et al.  Matched information rate codes for Partial response channels , 2005, IEEE Transactions on Information Theory.

[18]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[19]  Frank R. Kschischang,et al.  Analysis of low-density parity-check codes for the Gilbert-Elliott channel , 2005, IEEE Transactions on Information Theory.

[20]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Krishna R. Narayanan Effect of precoding on the convergence of turbo equalization for partial response channels , 2001, IEEE J. Sel. Areas Commun..

[22]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[23]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[24]  R. Urbanke,et al.  Asymptotic Analysis of Turbo Codes over the Binary Erasure Channel , 2002 .

[25]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[26]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[27]  Morris Tenenbaum,et al.  Ordinary differential equations : an elementary textbook for students of mathematics, engineering, and the sciences , 1963 .

[28]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[29]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[30]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[31]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[32]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[33]  C. L. Frenzen Error bounds for asymptotic expansions of the ratio of two gamma functions , 1987 .

[34]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[35]  Xiao Ma,et al.  Binary intersymbol interference channels: Gallager codes, density evolution, and code performance bounds , 2003, IEEE Transactions on Information Theory.

[36]  Paul H. Siegel,et al.  On the capacity of finite state channels and the analysis of convolutional accumulate-m codes , 2003 .

[37]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[38]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[39]  Paul H. Siegel,et al.  Joint message-passing decoding of LDPC Codes and partial-response channels , 2002, IEEE Trans. Inf. Theory.

[40]  Michael Mitzenmacher,et al.  Analysis of random processes via And-Or tree evaluation , 1998, SODA '98.

[41]  Paul H. Siegel,et al.  Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..

[42]  Israel Bar-David,et al.  Capacity and coding for the Gilbert-Elliot channels , 1989, IEEE Trans. Inf. Theory.

[43]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[44]  Paul H. Siegel,et al.  Codes for Digital Recorders , 1998, IEEE Trans. Inf. Theory.