Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons

AbstractWe study the excitation of solitons in lattices with Morse interactions in a wide temperature range and their influence on (free) electrons moving in the lattice. The lattice units (considered as “atoms" or “screened ion cores") are treated by classical Langevin equations. For visualizations the densities of the core (valence) electrons are in a first estimate represented by Gaussian densities, thus permitting to visualize lattice compressions. The evolution of the (free) electrons is modelled in the tight binding approximation first using Schrödinger equation and, subsequently, a stochastic description of the evolution as a Markov process. We investigate electron transfer assisted by solitons and solitonic influences on macroscopic transport in particular on diffusion. Then we consider the electron-lattice interaction and obtain numerical solutions of the simultaneously evolving Langevin and Pauli master equations. We show that the proposed mechanism of riding on thermal solitons is relatively fast (of the order of the sound velocity).

[1]  Werner Ebeling,et al.  Thermodynamics and phase transitions in dissipative and active Morse chains , 2005 .

[2]  J. S. Blakemore Semiconductor Statistics , 1962 .

[3]  Savin,et al.  Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains. , 1996, Physical review. B, Condensed matter.

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  Werner Ebeling,et al.  Electron Trapping by solitons: Classical versus Quantum Mechanical Approach , 2008, Int. J. Bifurc. Chaos.

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Alan R. Bishop,et al.  Charge trapping in DNA due to intrinsic vibrational hot spots , 2003 .

[8]  E. Conwell,et al.  Polarons in DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Werner Ebeling,et al.  Nonlinear excitations and electric transport in dissipative Morse-Toda lattices , 2006 .

[10]  T. Astakhova,et al.  Solitons on two-dimensional anharmonic square lattices , 2006 .

[11]  H. Gray,et al.  Long-range electron transfer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Hänggi,et al.  Quantum Transport and Dissipation , 1998 .

[13]  Kim Ø. Rasmussen,et al.  Nonlinear excitations in DNA: polarons and bubbles , 2004 .

[14]  A. Zewail,et al.  Femtosecond direct observation of charge transfer between bases in DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Alwyn C. Scott,et al.  Davydov's soliton revisited : self-trapping of vibrational energy in protein , 1990 .

[16]  L. Hove The ergodic behaviour of quantum many-body systems , 1959 .

[17]  George P. Tsironis,et al.  Polaron solutions and normal-mode analysis in the semiclassical Holstein model , 1998 .

[18]  A. Davydov,et al.  Soliton excitations in one‐dimensional molecular systems , 1983 .

[19]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[20]  S. Takeno,et al.  Davydov model: The quantum, mixed quantum-classical, and full classical systems , 1997 .

[21]  W. Ebeling,et al.  Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Lin,et al.  Dynamical principles in biological processes: a model of charge migration in proteins and DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Marchesoni,et al.  Soliton density in an infinite Toda lattice. , 1991, Physical review. B, Condensed matter.

[24]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[25]  Morikazu Toda,et al.  Nonlinear waves and solitons , 1989 .

[26]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[27]  B. Giese,et al.  Long-range charge hopping in DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Hove,et al.  Quantum-mechanical perturbations giving rise to a statistical transport equation , 1954 .

[29]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[30]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[31]  S. Sheu,et al.  Charge transport in a polypeptide chain , 2002 .

[32]  Alwyn C. Scott,et al.  Davydov’s Soliton , 1992 .

[33]  S. Rice,et al.  A numerical study of large amplitude motion on a chain of coupled nonlinear oscillators , 1979 .

[34]  P. Henderson,et al.  Radical Cation Transport and Reaction in RNA/DNA Hybrid Duplexes: Effect of Global Structure on Reactivity , 1999 .

[35]  Gero Friesecke,et al.  Existence theorem for solitary waves on lattices , 1994 .

[36]  Kerr,et al.  Do Davydov solitons exist at 300 K? , 1985, Physical review letters.

[37]  W. Ebeling,et al.  Electron capture and transport mediated by lattice solitons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Th. Just,et al.  Festschrift zum 60. , 1940 .

[39]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[40]  V. Bryksin,et al.  Hopping conductivity in ordered and disordered solids (II) , 1976 .

[41]  S. Rice,et al.  Large amplitude vibrational motion in a one dimensional chain: Coherent state representation , 1977 .

[42]  V. L. Bonch-bruevich,et al.  Behaviour of the charge carriers in a random force field and some problems of the electronic theory of disordered semiconductors , 1973 .

[43]  S O Kelley,et al.  Femtosecond dynamics of DNA-mediated electron transfer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  V. V. Bryksin,et al.  Hopping Conduction in Solids , 1985 .

[45]  T. Valkering Periodic permanent waves in an anharmonic chain with nearest-neighbour interaction , 1978 .

[46]  L. Hove The approach to equilibrium in quantum statistics: A perturbation treatment to general order , 1957 .

[47]  Werner Ebeling,et al.  Thermal solitons and Solectrons in 1D anharmonic Lattices up to Physiological temperatures , 2008, Int. J. Bifurc. Chaos.

[48]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[49]  R. Tolman,et al.  The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.

[50]  Peter G. Bergmann,et al.  Irreversible gibbsian ensembles , 1957 .