Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids

Fracture behavior of piezoelectric solids under time-harmonic loading is numerically analyzed in this paper. A 2-D boundary element method (BEM) based on both displacement and traction boundary integral equations is presented. The time-harmonic Green’s functions for the infinite plane are split into singular plus regular terms, the singular ones coinciding with the static Green’s functions. In this manner the singular and hypersingular integrals arising in the formulation may be treated by the same simple regularization procedure proposed by the authors for static piezoelectricity. Quarter-point elements are used for the direct evaluation of stress and electric displacement intensity factors from nodal values. Several numerical examples for the scattering of waves by different crack configurations including branched and curved cracks and crack interaction problems are given to demonstrate the performance of the proposed method. 2006 Elsevier B.V. All rights reserved.

[1]  J. Domínguez Boundary elements in dynamics , 1993 .

[2]  Horacio Sosa,et al.  New developments concerning piezoelectric materials with defects , 1996 .

[3]  J. Domínguez,et al.  Anisotropic and piezoelectric materials fracture analysis by BEM , 2005 .

[4]  Rafael Gallego,et al.  Hypersingular quarter‐point boundary elements for crack problems , 1995 .

[5]  W. Deeg,et al.  The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .

[6]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[7]  E. Pan A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids , 1999 .

[8]  H. Hong,et al.  Derivations of Integral Equations of Elasticity , 1988 .

[9]  Yoshikazu Araki,et al.  Time-harmonic BEM for 2-D piezoelectricity applied to eigenvalue problems , 2004 .

[10]  Y. E. Pak,et al.  Linear electro-elastic fracture mechanics of piezoelectric materials , 1992 .

[11]  Y. Shindo,et al.  Impact response of a finite crack in an orthotropic piezoelectric ceramic , 1999 .

[12]  C. Y. Wang,et al.  Elastodynamic fundamental solutions for anisotropic solids , 1994 .

[13]  Ch. Zhang,et al.  3-D and 2-D Dynamic Green's functions and time-domain BIEs for piezoelectric solids , 2005 .

[14]  C. Sun,et al.  Fracture Criteria for Piezoelectric Ceramics , 1995 .

[15]  Tong-Yi Zhang,et al.  Fracture behaviors of piezoelectric materials , 2004 .

[16]  Andrés Sáez,et al.  Two-dimensional time-harmonic BEM for cracked anisotropic solids , 2006 .

[17]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[18]  D. M. Barnett,et al.  Dislocations and line charges in anisotropic piezoelectric insulators , 1975 .

[19]  Xian‐Fang Li,et al.  Fracture analysis of cracked piezoelectric materials , 2004 .

[20]  P. Sollero,et al.  Anisotropic analysis of cracks in composite laminates using the dual boundary element method , 1995 .

[21]  F. Garcíaa,et al.  Traction boundary elements for cracks in anisotropic solids , 2004 .

[22]  E. L. Albuquerque,et al.  Dual boundary element method for anisotropic dynamic fracture mechanics , 2004 .

[23]  Horacio Sosa,et al.  On the fracture mechanics of piezoelectric solids , 1992 .