Metrics for Probabilistic Geometries

We investigate the geometrical structure of probabilistic generative dimensionality reduction models using the tools of Riemannian geometry. We explicitly define a distribution over the natural metric given by the models. We provide the necessary algorithms to compute expected metric tensors where the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances that respect the expected metric lead to more appropriate generation of new data.

[1]  P. Hartman Ordinary Differential Equations , 1965 .

[2]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[3]  Deva Ramanan,et al.  Local Distance Functions: A Taxonomy, New Algorithms, and an Evaluation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Søren Hauberg,et al.  Unscented Kalman Filtering on Riemannian Manifolds , 2013, Journal of Mathematical Imaging and Vision.

[5]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[6]  Neil D. Lawrence,et al.  Variational Gaussian Process Dynamical Systems , 2011, NIPS.

[7]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[8]  I. Holopainen Riemannian Geometry , 1927, Nature.

[9]  Lawrence F. Shampine,et al.  A BVP solver based on residual control and the Maltab PSE , 2001, TOMS.

[10]  T. W. Anderson The Non-Central Wishart Distribution and Certain Problems of Multivariate Statistics , 1946 .

[11]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[12]  LawrenceNeil Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005 .

[13]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[14]  Søren Hauberg,et al.  Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics , 2013, AISTATS.

[15]  Stephen M. Omohundro,et al.  Nonlinear Image Interpolation using Manifold Learning , 1994, NIPS.

[16]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[17]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[18]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[19]  Alfredo Vellido,et al.  Advances in clustering and visualization of time series using GTM through time , 2008, Neural Networks.

[20]  Jakub M. Tomczak,et al.  Manifold Regularized Particle Filter for Articulated Human Motion Tracking , 2013, ICSS.

[21]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[23]  Neil D. Lawrence,et al.  A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models , 2010, J. Mach. Learn. Res..

[24]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[25]  Søren Hauberg,et al.  A Geometric take on Metric Learning , 2012, NIPS.

[26]  Joshua B. Tenenbaum,et al.  Mapping a Manifold of Perceptual Observations , 1997, NIPS.

[27]  Tom LaGatta,et al.  Geodesics of Random Riemannian Metrics , 2012, 1206.4939.

[28]  David J. Fleet,et al.  Priors for people tracking from small training sets , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[30]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[31]  Christopher K. I. Williams,et al.  Magnification factors for the SOM and GTM algorithms , 1997 .

[32]  Paulo J. G. Lisboa,et al.  Seeing is believing: The importance of visualization in real-world machine learning applications , 2011, ESANN.

[33]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[34]  Michael I. Jordan,et al.  Mixtures of Probabilistic Principal Component Analyzers , 2001 .