CMOS low-noise amplifier design optimization techniques

This paper reviews and analyzes four reported low-noise amplifier (LNA) design techniques applied to the cascode topology based on CMOS technology: classical noise matching, simultaneous noise and input matching (SNIM), power-constrained noise optimization, and power-constrained simultaneous noise and input matching (PCSNIM) techniques. Very simple and insightful sets of noise parameter expressions are newly introduced for the SNIM and PCSNIM techniques. Based on the noise parameter equations, this paper provides clear understanding of the design principles, fundamental limitations, and advantages of the four reported LNA design techniques so that the designers can get the overall LNA design perspective. As a demonstration for the proposed design principle of the PCSNIM technique, a very low-power folded-cascode LNA is implemented based on 0.25-/spl mu/m CMOS technology for 900-MHz Zigbee applications. Measurement results show the noise figure of 1.35 dB, power gain of 12 dB, and input third-order intermodulation product of -4dBm while dissipating 1.6 mA from a 1.25-V supply (0.7 mA for the input NMOS transistor only). The overall behavior of the implemented LNA shows good agreement with theoretical predictions.

[1]  S. S. Taylor On the optimum width of GaAs MESFETs for low noise amplifiers , 1998, 1998 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.98CH36182).

[2]  M. Leong,et al.  Design of MMIC LNA for 1.9 GHz CDMA portable communication , 1998, ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No.98EX106).

[3]  Sang-Gug Lee,et al.  Linearity vs. Q‐factor of loads for RF amplifiers , 2003 .

[4]  G. Knoblinger,et al.  Thermal channel noise of quarter and sub-quarter micron NMOSFET's , 2000, ICMTS 2000. Proceedings of the 2000 International Conference on Microelectronic Test Structures (Cat. No.00CH37095).

[5]  C. Kermarrec,et al.  Ultra low power low noise amplifiers for wireless communications , 1993, 15th Annual GaAs IC Symposium.

[6]  R.E. Lehmann,et al.  X-band monolithic series feedback LNA , 1985, IEEE Transactions on Electron Devices.

[7]  G. Knoblinger,et al.  A new model for thermal channel noise of deep submicron MOSFETs and its application in RF-CMOS design , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[8]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[9]  T. Yoshimasu,et al.  Miniaturized low noise variable MMIC amplifiers with low power consumption for L-band portable communication applications , 1993, IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers.

[10]  A. van der Ziel,et al.  Representation of noise in linear two-ports , 1969 .

[11]  M. Biyani,et al.  3 V low noise amplifier implemented using a 0.8 /spl mu/m CMOS process with three metal layers for 900 MHz operation , 1996 .

[12]  R. D. Pollard,et al.  Optimum noise-source reflection-coefficient design with feedback amplifiers , 1997 .

[13]  F. Stubbe,et al.  A CMOS RF-receiver front-end for 1 GHz applications , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[14]  F. Ali,et al.  A novel cascode feedback GaAs MMIC LNA with transformer-coupled output using multiple fabrication processes , 1992, IEEE Microwave and Guided Wave Letters.

[15]  Thomas H. Lee The Design of CMOS Radio-Frequency Integrated Circuits , 1998 .

[16]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[17]  Robert W. Dutton,et al.  A noise optimization technique for integrated low-noise amplifiers , 2002, IEEE J. Solid State Circuits.

[18]  R. D. Pollard,et al.  The Pospieszalski noise model and the imaginary part of the optimum noise source impedance of extrinsic or packaged FET's , 1997 .

[19]  Y. Sasaki,et al.  A C-band 4-stage low noise miniaturized amplifier using lumped elements , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[20]  M. Nagaoka,et al.  A 2-V operation RF front-end GaAs MMIC for PHS hand-set , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[21]  Behzad Razavi CMOS technology characterization for analog and RF design , 1999 .

[22]  K. B. Niclas The Exact Noise Figure of Amplifiers with Parallel Feedback and Lossy Matching Circuits , 1982 .

[23]  Nobuo Shiga,et al.  X-band MMIC amplifier with pulse-doped GaAs MESFETs , 1991, IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers.

[24]  A. Ziel Noise in solid state devices and circuits , 1986 .

[25]  T. Quach,et al.  A highly integrated commercial GaAs transceiver MMIC for 2.45 GHz ISM applications , 1997, Proceedings of 1997 Wireless Communications Conference.

[26]  H.R. Rategh,et al.  A 5-GHz CMOS wireless LAN receiver front end , 2000, IEEE Journal of Solid-State Circuits.

[27]  J. L. Showell,et al.  A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1997 .

[28]  Pietro Andreani,et al.  Noise optimization of an inductively degenerated CMOS low noise amplifier , 2001 .

[29]  K. B. Niclas Noise in Broad-Band GaAs MESFET Amplifiers with Parallel Feedback , 1982 .

[30]  K.O. Kenneth,et al.  A 900-MHz, 0.8-/spl mu/m CMOS low noise amplifier with 1.2-dB noise figure , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[31]  H. Samavati,et al.  5-GHz CMOS wireless LANs , 2002 .

[32]  H. A. Haus,et al.  Representation of Noise in Linear Twoports , 1960, Proceedings of the IRE.

[33]  Yasushi Yamao,et al.  GaAs monolithic low-power amplifiers with RC parallel feedback , 1984 .