A framework for combining a motion atlas with non‐motion information to learn clinically useful biomarkers: Application to cardiac resynchronisation therapy response prediction

&NA; We present a framework for combining a cardiac motion atlas with non‐motion data. The atlas represents cardiac cycle motion across a number of subjects in a common space based on rich motion descriptors capturing 3D displacement, velocity, strain and strain rate. The non‐motion data are derived from a variety of sources such as imaging, electrocardiogram (ECG) and clinical reports. Once in the atlas space, we apply a novel supervised learning approach based on random projections and ensemble learning to learn the relationship between the atlas data and some desired clinical output. We apply our framework to the problem of predicting response to Cardiac Resynchronisation Therapy (CRT). Using a cohort of 34 patients selected for CRT using conventional criteria, results show that the combination of motion and non‐motion data enables CRT response to be predicted with 91.2% accuracy (100% sensitivity and 62.5% specificity), which compares favourably with the current state‐of‐the‐art in CRT response prediction. HighlightsFramework to combine cardiac motion and deformation data with non‐motion data.Motion atlas use for comparison of LV displacement, velocity, strain and strain rate.Random projections and multiple kernel learning are used to extract relevant features.Application to response prediction in cardiac resynchronisation therapy.94% and 91% classification accuracy of super‐responders and non‐responders. Graphical abstract Figure. No caption available.

[1]  John D Ferguson,et al.  Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. , 2014, Journal of the American College of Cardiology.

[2]  P. Enright,et al.  The six-minute walk test. , 2003, Respiratory care.

[3]  Brandon K. Fornwalt,et al.  The dyssynchrony in predicting response to cardiac resynchronization therapy: a call for change. , 2011, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[4]  Michael I. Miller,et al.  Cardiac motion analysis in ischemic and non-ischemic cardiomyopathy using parallel transport , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[5]  Chiou-Shann Fuh,et al.  Multiple Kernel Learning for Dimensionality Reduction , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jeroen J. Bax,et al.  Results of the Predictors of Response to CRT (PROSPECT) Trial , 2008, Circulation.

[7]  Christophe Leclercq,et al.  2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. , 2012, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[8]  Alejandro F. Frangi,et al.  SPM to the heart: Mapping of 4D continuous velocities for motion abnormality quantification , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[9]  Yves Grandvalet,et al.  Y.: SimpleMKL , 2008 .

[10]  Daniel Rueckert,et al.  A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion , 2015, Medical Image Anal..

[11]  Paul R. Heyliger,et al.  Nonlinear continuum mechanics for finite element analysis (2nd edn). Javier Bonet and Richard D. Wood, Cambridge University Press, Cambridge, 2008. No. of pages: 318. ISBN: 978-0-521-83870-2 , 2008 .

[12]  Michael I. Miller,et al.  Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes , 2009, NeuroImage.

[13]  Reza Razavi,et al.  A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. , 2014, Heart rhythm.

[14]  Jeroen J. Bax,et al.  Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. , 2009, Journal of the American College of Cardiology.

[15]  Alejandro F. Frangi,et al.  A High-Resolution Atlas and Statistical Model of the Human Heart From Multislice CT , 2013, IEEE Transactions on Medical Imaging.

[16]  Milton Packer,et al.  Cardiac resynchronization in chronic heart failure. , 2002, The New England journal of medicine.

[17]  Maxime Sermesant,et al.  Descriptive and Intuitive Population-Based Cardiac Motion Analysis via Sparsity Constrained Tensor Decomposition , 2015, MICCAI.

[18]  Daniel Rueckert,et al.  Construction of a Statistical Model for Cardiac Motion Analysis Using Nonrigid Image Registration , 2003, IPMI.

[19]  Reza Razavi,et al.  Noninvasive assessment of LV contraction patterns using CMR to identify responders to CRT. , 2013, JACC. Cardiovascular imaging.

[20]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[21]  Jyrki Lötjönen,et al.  Nonlinear dimensionality reduction combining MR imaging with non-imaging information , 2012, Medical Image Anal..

[22]  Alistair A. Young,et al.  Continuous Spatio-temporal Atlases of the Asymptomatic and Infarcted Hearts , 2013, STACOM.

[23]  Piet Claus,et al.  Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. , 2009, European heart journal.

[24]  Ping Zhang,et al.  True complete left bundle branch block morphology strongly predicts good response to cardiac resynchronization therapy. , 2013, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[25]  Nicolas Duchateau,et al.  Which Reorientation Framework for the Atlas-Based Comparison of Motion from Cardiac Image Sequences? , 2012, STIA.

[26]  Alejandro F. Frangi,et al.  Benchmarking framework for myocardial tracking and deformation algorithms: An open access database , 2013, Medical Image Anal..

[27]  Enric Martí,et al.  A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function , 2010, IEEE Transactions on Medical Imaging.

[28]  Alexander Dick,et al.  Pattern Recognition of Abnormal Left Ventricle Wall Motion in Cardiac MR , 2009, MICCAI.

[29]  R M Whitlock,et al.  Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. , 1987, Circulation.

[30]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[31]  D. Delurgio,et al.  Cardiac resynchronization in chronic heart failure. , 2002, The New England journal of medicine.

[32]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[33]  Nicholas Ayache,et al.  Schild's Ladder for the Parallel Transport of Deformations in Time Series of Images , 2011, IPMI.

[34]  Christophe Leclercq,et al.  2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. , 2012, Heart rhythm.

[35]  D. Kass,et al.  Electromechanical Dyssynchrony and Resynchronization of the Failing Heart , 2013, Circulation research.

[36]  Alejandro F. Frangi,et al.  An Atlas for Cardiac MRI Regional Wall Motion and Infarct Scoring , 2012, STACOM.

[37]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[38]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[39]  Daniel Rueckert,et al.  Comparison of Cardiac Motion Across Subjects Using Non-rigid Registration , 2002, MICCAI.

[40]  Alfred O. Hero,et al.  Classification constrained dimensionality reduction , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[41]  Vikas Singh,et al.  MKL for Robust Multi-modality AD Classification , 2009, MICCAI.

[42]  Nicolas Duchateau,et al.  Characterization of Myocardial Velocities by Multiple Kernel Learning: Application to Heart Failure with Preserved Ejection Fraction , 2015, FIMH.

[43]  Nicolas Duchateau,et al.  Atlas-Based Quantification of Myocardial Motion Abnormalities: Added-value for the Understanding of CRT Outcome? , 2010, STACOM/CESC.

[44]  Miguel Ventura,et al.  Identification of 'super-responders' to cardiac resynchronization therapy: the importance of symptom duration and left ventricular geometry. , 2009, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[45]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Sammy Khatib,et al.  Cardiac resynchronization therapy. , 2009, The Ochsner journal.

[47]  Sébastien Ourselin,et al.  A Comprehensive Cardiac Motion Estimation Framework Using Both Untagged and 3-D Tagged MR Images Based on Nonrigid Registration , 2012, IEEE Transactions on Medical Imaging.

[48]  Karl Swedberg,et al.  Six minute walk test. , 2005, European heart journal.

[49]  Roman Filipovych,et al.  Multi-Kernel Classification for Integration of Clinical and Imaging Data: Application to Prediction of Cognitive Decline in Older Adults , 2011, MLMI.

[50]  Eva Maret,et al.  ' s response to reviews Title : Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar , 2009 .

[51]  Daniel Rueckert,et al.  A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy , 2014, Journal of Cardiovascular Magnetic Resonance.

[52]  Daniel Rueckert,et al.  Prospective Identification of CRT Super Responders Using a Motion Atlas and Random Projection Ensemble Learning , 2015, MICCAI.

[53]  Françoise J. Prêteux,et al.  Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI , 2004, SPIE Medical Imaging.

[54]  John N Oshinski,et al.  It's time for a paradigm shift in the quantitative evaluation of left ventricular dyssynchrony. , 2009, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[55]  Alejandro F. Frangi,et al.  Automated Detection of Regional Wall Motion Abnormalities Based on a Statistical Model Applied to Multislice Short-Axis Cardiac MR Images , 2009, IEEE Transactions on Medical Imaging.

[56]  Alejandro F. Frangi,et al.  Constrained manifold learning for the characterization of pathological deviations from normality , 2012, Medical Image Anal..

[57]  Alejandro F. Frangi,et al.  A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities , 2011, Medical Image Anal..

[58]  Theodore P. Abraham,et al.  Criteria predicting response to CRT: is more better? , 2009, European heart journal.

[59]  Daniel Rueckert,et al.  Spatial transformation of motion and deformation fields using nonrigid registration , 2004, IEEE Transactions on Medical Imaging.

[60]  Daniel Rueckert,et al.  Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration , 2004, IEEE Transactions on Medical Imaging.

[61]  Maxime Sermesant,et al.  Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics , 2015, IEEE Transactions on Medical Imaging.

[62]  Chinmay Hegde,et al.  Random Projections for Manifold Learning , 2007, NIPS.

[63]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[64]  Jeroen J. Bax,et al.  Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. , 2006, The American journal of cardiology.