Growth, productivity, and utilization of kenaf (Hibiscus cannabinus L.): A promising fiber and fuel crop for Iowa

..... ........................................................................................................ 127 Introduction........................................................................................................... 129 Material and Methods........................................................................................... 134 Results and Discussion......................................................................................... 137 Conclusion.... ....................................................................................................... 153 Acknowledgements ............................................................................................... 154 References... ........................................................................................................ 167 CHAPTER 5 KENAF PRODUCTIVITY AND MORPHOLOGY, WHEN GROWN IN IOWA AND IN KENTUCKY .............................................................. 173 Abstract...... ........................................................................................................ 173 Introduction........................................................................................................... 175 Material and Methods........................................................................................... 178 Results and Discussion......................................................................................... 183 Conclusion.... ....................................................................................................... 197 Acknowledgements ............................................................................................... 198 References... ........................................................................................................ 213 CHAPTER 6 A MODEL FOR EVALUATING PRODUCTION AND ENVIRONMENTAL PERFORMANCE OF KENAF IN ROTATION WITH OTHER CROPS ............................................................................................. 217 Abstract...... ........................................................................................................ 217 Introduction........................................................................................................... 219 Material and Methods........................................................................................... 221 Results........ ........................................................................................................ 227 Discussion..... ...................................................................................................... 230 Conclusion.... ....................................................................................................... 236 References... ........................................................................................................ 247 CHAPTER 7 GENERAL CONCLUSIONS .......................................................... 253 APPENDIX A RESULTS OF STATISTICAL ANALYSIS PERFORMED ON PYROLYSIS PRODUCTS FROM THE 5 VARIETIES OF KENAF GROWN AT BOONE, IA IN 2004 AND 2005 AND SEPARATED INTO BAST AND CORE .. 258 APPENDIX B MONTHLY CUMULATIVE PRECIPITATION AND AVERAGE AIR TEMPERATURE IN 2014 AND 2015, IN BOONE COUNTY, IOWA........... 259 APPENDIX C SOIL ANALYSES BEFORE AND AFTER GROWING KENAF IN BOTH 2014 AND 2015............. ....................................................................... 260 APPENDIX D RESULTS OF THE ANOVA WITH REPEATED MEASURES PERFORMED ON STEM HEIGHT, BASAL DIAMETER, AND LEAF AREA INDEX..................................................................................................................... 261

[1]  A. Monti,et al.  Kenaf: A Multi-Purpose Crop for Several Industrial Applications , 2013 .

[2]  D. Baker,et al.  Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes , 2011 .

[3]  R. C. Muchow,et al.  Effect of sowing date on the growth and yield of kenaf (Hibiscus cannabinus) grown under irrigation in tropical Australia II. Stem production , 1983 .

[4]  Tristan R. Brown,et al.  Biorenewable Resources: Engineering New Products from Agriculture , 2003 .

[5]  B. Lu,et al.  Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis , 2004, Genetic Resources and Crop Evolution.

[6]  Ann M. Johanns,et al.  Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health , 2012, PloS one.

[7]  S. Cosentino,et al.  Yield, water use and radiation use efficiencies of kenaf (Hibiscus cannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterranean area , 2013 .

[8]  Greg McLean,et al.  Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. , 2010, Journal of experimental botany.

[9]  Kwang Ho Kim,et al.  Pyrolytic sugars from cellulosic biomass. , 2012, ChemSusChem.

[10]  Sibel Irmak,et al.  Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. , 2014, Bioresource technology.

[11]  L. Angelini,et al.  Screening of kenaf (Hibiscus cannabinus L.) genotypes for low temperature requirements during germination and evaluation of feasibility of seed production in Italy , 1998 .

[12]  Mohammad Jawaid,et al.  Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective , 2015 .

[13]  Highly Functional Bioplastics (PLA compounds) Used for Electronic Products , 2007, Polytronic 2007 - 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics.

[14]  David E. James,et al.  Agricultural‐Nitrogen Contributions to Hypoxia in the Gulf of Mexico , 1999 .

[15]  Fernando E. Miguez,et al.  Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States , 2016 .

[16]  A. Błędzki,et al.  Biocomposites reinforced with natural fibers: 2000–2010 , 2012 .

[17]  G. A. White,et al.  Effect of Population Levels on Growth Factors in Kenaf Varieties1 , 1971 .

[18]  P. Carberry,et al.  A Simulation Model of Kenaf for Assisting Fibre Industry Planning in Northern Australia. II.* Leaf Area Development , 1992 .

[19]  P. Montalti,et al.  Yield potential and adaptation of kenaf (Hibiscus cannabinus) in north-central Italy , 1994 .

[20]  K. Moore,et al.  Effects of Nitrogen Fertilization on Biomass Yield and Quality in Large Fields of Established Switchgrass in Southern Iowa, USA , 2008 .

[21]  Bruce E. Dale,et al.  'Greening' the chemical industry: Research and development priorities for biobased industrial products , 2003 .

[22]  R. Vos,et al.  Residual soil nitrate content and profitability of five cropping systems in northwest Iowa , 2017, PloS one.

[23]  L. J. Reddy,et al.  Predicting growth and development of pigeonpea: flowering response to photoperiod , 2001 .

[24]  James W. Jones,et al.  The DSSAT cropping system model , 2003 .

[25]  K. Moore,et al.  Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States , 2014 .

[26]  P. Carberry,et al.  A simulation model of kenaf for assisting fibre industry planning in northern Australia. III. Model description and validation , 1992 .

[27]  S. Archontoulis,et al.  Growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) under different agricultural inputs and management practices in central Greece , 2010 .

[28]  Kwang Ho Kim,et al.  Variety Trial and Pyrolysis Potential of Kenaf Grown in Midwest United States , 2017, BioEnergy Research.

[29]  M. Berti,et al.  Row Spacing Affects Biomass Yield and Composition of Kenaf (Hibiscus cannabinus L.) as a Lignocellulosic Feedstock for Bioenergy , 2013 .

[30]  Byoungho Lee,et al.  Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process , 2009 .

[31]  M. S. Bhangoo,et al.  Effect of planting date, nitrogen levels, row spacing, and plant population on Kenaf performance in the San Joaquin Valley, California , 1986 .

[32]  Chris Murphy,et al.  APSIM - Evolution towards a new generation of agricultural systems simulation , 2014, Environ. Model. Softw..

[33]  S. Shi,et al.  Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering , 2016 .

[34]  N. Danalatos,et al.  Irrigation and N-fertilization effects on kenaf growth and biomass productivity in central Greece , 2006 .

[35]  J. H. Williams Influence of Row Spacing and Nitrogen Levels on Dry Matter Yields of Kenaf (Hibiscus cannabinus L.)1 , 1966 .

[36]  S. Amaducci,et al.  Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy , 2000 .

[37]  A. Monti,et al.  New Insights from the BIOKENAF Project , 2013 .

[38]  Hülya Kalaycıoğlu,et al.  Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks , 2006 .

[39]  S. Shi,et al.  Increasing inorganic nanoparticle impregnation efficiency by external pressure for natural fibers , 2015 .

[40]  R. G. Evans,et al.  Nitrogen Use in Durum and Selected Brassicaceae Oilseeds in Two‐Year Rotations , 2014 .

[41]  M. Christou,et al.  BIOKENAF: A NETWORK FOR INDUSTRIAL PRODUCTS AND BIOMASS FOR ENERGY FROM KENAF , 2004 .

[42]  K. Moore,et al.  Variety Interacts with Space and Time to Influence Switchgrass Quality , 2016 .

[43]  E. Alexopoulou,et al.  Growth and yields of kenaf varieties in central Greece , 2000 .

[44]  D. Jordan,et al.  Influence of Cultural Practices and Crop Rotation on Kenaf Yield in North Carolina , 2005 .

[45]  J. Janick,et al.  Trends in new crops and new uses , 2002 .

[46]  Fernando E. Miguez,et al.  Nonlinear Regression Models and Applications in Agricultural Research , 2015 .

[47]  C. Flint,et al.  Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds. , 2015, Journal of environmental quality.

[48]  Iain S. Donnison,et al.  The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow , 2007 .

[49]  Jan Vos,et al.  A flexible sigmoid function of determinate growth. , 2003, Annals of botany.

[50]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[51]  F. Metzger,et al.  Feeding Habits of the Adult Japanese Beetle. , 1940 .

[52]  Michael Duffy,et al.  Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Locations , 2006 .

[53]  Holger Meinke,et al.  Development of a generic crop model template in the cropping system model APSIM , 2002 .

[54]  R. C. Muchow Effect of leaf nitrogen and water regime on the photosynthetic capacity of kenaf (Hibiscus cannabinus L.) under field conditions , 1990 .

[55]  K. Moore,et al.  Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials. , 2012, Journal of the science of food and agriculture.

[56]  Russell C. Muchow,et al.  A simulation model of kenaf for assisting fibre industry planning in northern Australia. IV. Analysis of climatic risk , 1993 .

[57]  A. Dobermann,et al.  Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management , 2002, Ambio.

[58]  M. Castellano,et al.  A long‐term nitrogen fertilizer gradient has little effect on soil organic matter in a high‐intensity maize production system , 2014, Global change biology.

[59]  Naheed Saba,et al.  Mechanical properties of kenaf fibre reinforced polymer composite: A review , 2015 .

[60]  Khalina Abdan,et al.  KENAF FIBRES AS REINFORCEMENT FOR POLYMERIC COMPOSITES: A REVIEW , 2009 .

[61]  J. Massey Effects of Nitrogen Levels and Row Widths on Kenaf 1 , 1974 .

[62]  C. Webber,et al.  Effect of location and cultivar on kenaf yield components , 1992 .

[63]  Burton L. Johnson,et al.  Sorghum and kenaf biomass yield and quality response to nitrogen fertilization in the Northern Great Plains of the USA , 2013 .

[64]  Mohammad Jawaid,et al.  Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber , 2010 .

[65]  V. K. Bledsoe,et al.  Plant maturity and kenaf yield components , 2002 .

[66]  R. C. Muchow,et al.  A simulation model of kenaf for assisting fibre industry planning in northern Australia. I. General introduction and phenological model , 1992 .

[67]  G. Danalatosa,et al.  Growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) under different agricultural inputs and management practices in central Greece , 2010 .

[68]  Paul C. Struik,et al.  Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower, kenaf and cynara , 2011 .

[69]  J. Talib,et al.  Effects of Nitrogen, Phosphorus and Potassium Levels on Kenaf (Hibiscus cannabinus L.) Growth and Photosynthesis under Nutrient Solution , 2010 .

[70]  G. A. White,et al.  Effects of Plant Population and Harvest Date on Stem Yield and Growth Components of Kenaf in Maryland1 , 1970 .

[71]  Liwang Ma,et al.  Evaluating and predicting agricultural management effects under tile drainage using modified APSIM , 2007 .

[72]  Ayhan Demirbas,et al.  Relationships between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels , 2002 .

[73]  N. Danalatos,et al.  Sowing time and plant density effects on growth and biomass productivity of two kenaf varieties in central Greece , 2006 .

[74]  B. Baldwin,et al.  Population density and row spacing effects on dry matter yield and bark content of kenaf (Hibiscus cannabinus L.) , 2006 .