Proteorhodopsins: an array of physiological roles?

Metagenomic analyses have revealed widespread and diverse retinal-binding rhodopsin proteins (named proteorhodopsins) among numerous marine bacteria and archaea, which has challenged the notion that solar energy can only enter marine ecosystems by chlorophyll-based photosynthesis. Most marine proteorhodopsins share structural and functional similarities with archaeal bacteriorhodopsins, which generate proton motive force via light-activated proton pumping, thereby ultimately powering ATP production. This suggests an energetic role for proteorhodopsins. However, results from a growing number of investigations do not readily fit this model, which indicates that proteorhodopsins could have a range of physiological functions.

[1]  S. Giovannoni,et al.  Evolution, diversity, and molecular ecology of marine prokaryotes , 2000 .

[2]  C. Kelley,et al.  Iron stimulation of Antarctic bacteria , 1996, Nature.

[3]  W. Doolittle,et al.  Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. , 2008, Environmental microbiology.

[4]  J. Fuhrman,et al.  Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results , 1982 .

[5]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[6]  Francesc Peters,et al.  Limits to growth and respiration of bacterioplankton in the Gulf of Mexico. , 1995 .

[7]  David M. Karl,et al.  Microbiological oceanography: Hidden in a sea of microbes , 2002, Nature.

[8]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[9]  R. Neutze,et al.  Light stimulates growth of proteorhodopsin-containing marine Flavobacteria , 2007, Nature.

[10]  L. Brown,et al.  Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[11]  Oded Béjà,et al.  Diversification and spectral tuning in marine proteorhodopsins , 2003, The EMBO journal.

[12]  R. Amann,et al.  Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. , 2002, International journal of systematic and evolutionary microbiology.

[13]  J. Spudich,et al.  Spectroscopic and Photochemical Characterization of a Deep Ocean Proteorhodopsin* , 2003, Journal of Biological Chemistry.

[14]  J. Spudich,et al.  Microbial Rhodopsins: Phylogenetic and Functional Diversity , 2005 .

[15]  J. Spudich The multitalented microbial sensory rhodopsins. , 2006, Trends in microbiology.

[16]  J. Spudich,et al.  Microbial rhodopsins: functional versatility and genetic mobility. , 2006, Trends in microbiology.

[17]  F. Jochem,et al.  Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate , 1999 .

[18]  J. Spudich,et al.  Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[19]  E. Delong,et al.  Genomic perspectives in microbial oceanography , 2005, Nature.

[20]  J. Lanyi,et al.  The photochemical reaction cycle of proteorhodopsin at low pH. , 2003, Biophysical journal.

[21]  Marion Leclerc,et al.  Proteorhodopsin phototrophy in the ocean , 2001, Nature.

[22]  J. Antón,et al.  Xanthorhodopsin: A Proton Pump with a Light-Harvesting Carotenoid Antenna , 2005, Science.

[23]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[24]  B. Fuchs,et al.  Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. , 2004, FEMS microbiology ecology.

[25]  W. Doolittle,et al.  The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Delong,et al.  Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. , 2007, Environmental microbiology.

[27]  J. Fuhrman,et al.  Impact of light on marine bacterioplankton community structure , 2005 .

[28]  M. Cottrell,et al.  Carbon versus iron limitation of bacterial growth in the California upwelling regime , 2000 .

[29]  S. Giovannoni,et al.  The small genome of an abundant coastal ocean methylotroph. , 2008, Environmental microbiology.

[30]  Luke E. Ulrich,et al.  Ecological Genomics of Marine Roseobacters , 2007, Applied and Environmental Microbiology.

[31]  P. Falkowski,et al.  Bacterial photosynthesis in surface waters of the open ocean , 2000, Nature.

[32]  S Psarra,et al.  Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean , 2005, Science.

[33]  Joseph P Bielawski,et al.  Novel Proteorhodopsin variants from the Mediterranean and Red Seas. , 2003, Environmental microbiology.

[34]  J. Spudich,et al.  Retinylidene proteins: structures and functions from archaea to humans. , 2000, Annual review of cell and developmental biology.

[35]  P. Raimbault,et al.  Factors limiting heterotrophic bacterial production in the southern Pacific Ocean , 2007 .

[36]  T. Zohary,et al.  Experimental study of microbial P limitation in the eastern Mediterranean , 1998 .

[37]  J. Fuhrman,et al.  Wide‐ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR , 2005 .

[38]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[39]  J. Cotner,et al.  Phosphorus-limited bacterioplankton growth in the Sargasso Sea , 1997 .

[40]  H. Ducklow,et al.  Light Dependence of [3H]Leucine Incorporation in the Oligotrophic North Pacific Ocean , 2004, Applied and Environmental Microbiology.

[41]  O. Béjà,et al.  Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas , 2007, The ISME Journal.

[42]  D. Kirchman Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific , 1990 .

[43]  Oded Béjà,et al.  Different SAR86 subgroups harbour divergent proteorhodopsins. , 2004, Environmental microbiology.

[44]  Winslow R. Briggs,et al.  Handbook of Photosensory Receptors , 2005 .

[45]  W. Cochlan The heterotrophic bacterial response during a mesoscale iron enrichment experiment (IronEx II) in the eastern equatorial Pacific Ocean , 2001 .

[46]  E. Delong,et al.  Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host , 2007, Proceedings of the National Academy of Sciences.

[47]  M. Cottrell,et al.  Abundant proteorhodopsin genes in the North Atlantic Ocean. , 2007, Environmental microbiology.

[48]  J. Spudich Protein-protein interaction converts a proton pump into a sensory receptor , 1994, Cell.

[49]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[50]  H. Ducklow,et al.  Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean , 2000, Applied and Environmental Microbiology.

[51]  S. Giovannoni,et al.  Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site , 2007, The ISME Journal.

[52]  D. Oesterhelt,et al.  Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. , 1983, Annales de microbiologie.

[53]  M. Cottrell,et al.  Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre , 2006, Applied and Environmental Microbiology.

[54]  S. Giovannoni,et al.  Proteorhodopsin in the ubiquitous marine bacterium SAR11 , 2005, Nature.

[55]  E. Delong,et al.  Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea , 2006, Nature.

[56]  H. Claustre,et al.  High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean , 2007, Applied and Environmental Microbiology.

[57]  J. Spudich,et al.  New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins , 2005, PLoS biology.

[58]  M. Cottrell,et al.  Light-Stimulated Bacterial Production and Amino Acid Assimilation by Cyanobacteria and Other Microbes in the North Atlantic Ocean , 2007, Applied and Environmental Microbiology.

[59]  M. Moran,et al.  Resourceful heterotrophs make the most of light in the coastal ocean , 2007, Nature Reviews Microbiology.

[60]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[61]  S. Giovannoni,et al.  The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine Bacteria Possessing Proteorhodopsin , 2007, Applied and Environmental Microbiology.