The GAPS programme with HARPS-N at TNG - I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1

Context. Our understanding of the formation and evolution of planetary systems is still fragmentary because most of the current data provide limited information about the orbital structure and dynamics of these systems. The knowledge of the orbital properties for a variety of systems and at di erent ages yields information on planet migration and on star-planet tidal interaction mechanisms. Aims. In this context, a long-term, multi-purpose, observational programme has started with HARPS-N at TNG and aims to characterise the global architectural properties of exoplanetary systems. The goal of this first paper is to fully characterise the orbital properties of the transiting system Qatar-1 as well as the physical properties of the star and the planet. Methods. We exploit HARPS-N high-precision radial velocity measurements obtained during a transit to measure the Rossiter-McLaughlin e ect in the Qatar-1 system, and out-of-transit measurements to redetermine the spectroscopic orbit. New photometric-transit light-curves were analysed and a spectroscopic characterisation of the host star atmospheric parameters was performed based on various methods (line equivalent width ratios, spectral synthesis, spectral energy distribution). Results. We achieved a significant improvement in the accuracy of the orbital parameters and derived the spin-orbit alignment of the system; this information, combined with the spectroscopic determination of the host star properties (rotation, Te , logg, metallicity), allows us to derive the fundamental physical parameters for star and planet (masses and radii). The orbital solution for the Qatar-1 system is consistent with a circular orbit and the system presents a sky-projected obliquity of = 8:4 7:1 deg. The planet, with a mass of 1:33 0:05 MJ, is found to be significantly more massive than previously reported. The host star is confirmed to be metal-rich ([Fe/H] = 0:20 0:10) and slowly rotating (v sinI = 1:7 0:3 km s 1 ), though moderately active, as indicated by the strong chromospheric emission in the Caii H&K line cores (logR 0 4:60). Conclusions. We find that the system is well aligned and fits well within the general versus Te trend. We can definitely rule out any significant orbital eccentricity. The evolutionary status of the system is inferred based on gyrochronology, and the present orbital configuration and timescale for orbital decay are discussed in terms of star-planet tidal interactions.

U. Munari | A. Collier Cameron | M. P. Di Mauro | I. Ribas | F. Faedi | F. Pepe | E. Molinari | M. Barbieri | J. Southworth | E. Poretti | F. Borsa | I. Pagano | A. S. Bonomo | M. Damasso | V. Nascimbeni | M. Rainer | R. Silvotti | A. Sozzetti | L. Prisinzano | C. Knapic | G. Micela | R. Smareglia | S. Desidera | P. Giacobbe | R. Claudi | R. Cosentino | D. Turrini | N. C. Santos | C. Lovis | G. Leto | G. Piotto | S. Ciceri | N. Nikolov | E. Covino | A. Cunial | M. Pedani | G. Scandariato | D. W. Latham | L. Malavolta | C. Boccato | E. Carolo | L. Mancini | M. Bonavita | S. Benatti | D. Gandolfi | G. Lodato | M. Molinaro | M. Esposito | S. Messina | R. Gratton | M. Barbieri | G. H'ebrard | A. Bonomo | N. Santos | R. Claudi | R. Gratton | S. Desidera | F. Marzari | G. Lodato | A. Maggio | A. Cameron | R. Cosentino | D. Latham | E. Molinari | F. Pepe | G. Piotto | A. Sozzetti | C. Lovis | L. Malavolta | G. Micela | E. Poretti | F. Borsa | M. Damasso | S. Benatti | K. Biazzo | D. Nardiello | M. Rainer | L. Affer | E. Covino | P. Giacobbe | A. Harutyunyan | C. Knapic | G. Leto | L. Mancini | V. Nascimbeni | I. Pagano | G. Scandariato | M. Mauro | A. Fiorenzano | D. Turrini | M. Lattanzi | A. Triaud | D. Gandolfi | I. Ribas | S. Ciceri | U. Munari | D. Brown | F. Faedi | J. Southworth | L. Fabrizio | C. Mordasini | M. Molinaro | A. Lanza | S. Messina | L. Bedin | L. Borsato | V. Granata | R. Silvotti | R. Smareglia | L. Prisinzano | E. Shkolnik | M. Esposito | A. F. Lanza | G. H'ebrard | A. Harutyunyan | K. Biazzo | A. Maggio | N. Nikolov | J. Alcalá | C. Mordasini | F. Marzari | L. Di Fabrizio | J. M. Alcala | L. Borsato | V. Granata | M. Bonavita | E. Carolo | D. Nardiello | A.H.M.J. Triaud | L. Affer | D. Brown | E. Shkolnik | R. L'opez | L. Bedin | A. F. Mart'inez Fiorenzano | R. Rebolo L'opez | M. Lattanzi | C. Boccato | A. Cunial | M. Pedani | M. D. Mauro

[1]  M. Tsantaki,et al.  Deriving precise parameters for cool solar-type stars Optimizing the iron line list ?;??;??? , 2013, 1304.6639.

[2]  David Kipping,et al.  KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE , 2013, 1304.4283.

[3]  É. Bolmont,et al.  Tidal Dissipation and Eccentricity Pumping: Implications for the Depth of the Secondary Eclipse of 55 Cnc e , 2013, Proceedings of the International Astronomical Union.

[4]  S. Udry,et al.  On the functional form of the metallicity-giant planet correlation , 2013, 1302.1851.

[5]  G. Pace Chromospheric activity as age indicator - An L-shaped chromospheric-activity versus age diagram , 2013, 1301.5651.

[6]  M. Damasso,et al.  TASTE - III. A homogeneous study of transit time variations in WASP-3b , 2012, 1210.3045.

[7]  J. Papaloizou,et al.  Orbital evolution of a planet on an inclined orbit interacting with a disc , 2012, 1209.4843.

[8]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[9]  M. Barbieri,et al.  A lower radius and mass for the transiting extrasolar planet HAT-P-8b , 2012, 1212.3701.

[10]  Antonino F. Lanza,et al.  Starspot activity and rotation of the planet-hosting star Kepler-17 , 2012, 1210.1676.

[11]  Astronomy,et al.  Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near and Ursa Major† , 2012, 1209.2591.

[12]  T. Guillot,et al.  Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star , 2012 .

[13]  S. E. Dahm,et al.  TWO “b”s IN THE BEEHIVE: THE DISCOVERY OF THE FIRST HOT JUPITERS IN AN OPEN CLUSTER , 2012, 1207.0818.

[14]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[15]  L. Pasquini,et al.  Search for giant planets in M 67 - I. Overview , 2012, 1206.5820.

[16]  Jena,et al.  Extrasolar planets in stellar multiple systems , 2012, 1204.4833.

[17]  Avi Shporer,et al.  Observational constraints on tidal effects using orbital eccentricities , 2012, 1202.6379.

[18]  K.Horne,et al.  Factors affecting the radii of close-in transiting exoplanets , 2012, 1202.6199.

[19]  T. Krejčová,et al.  Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets , 2012, 1202.3623.

[20]  Antonino Francesco Lanza,et al.  Multiwavelength flux variations induced by stellar magnetic activity: effects on planetary transits , 2012, 1201.3514.

[21]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[22]  D. Lai Tidal dissipation in planet-hosting stars: damping of spin-orbit misalignment and survival of hot Jupiters , 2011, 1109.4703.

[23]  J. Fortney,et al.  USING STAR SPOTS TO MEASURE THE SPIN–ORBIT ALIGNMENT OF TRANSITING PLANETS , 2011, 1107.2106.

[24]  S. Dong,et al.  Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. , 2011, Physical review letters.

[25]  S. Naoz,et al.  THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE , 2011, 1106.3329.

[26]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[27]  B. Bitsch,et al.  Evolution of inclined planets in three-dimensional radiative discs , 2011, 1104.2408.

[28]  M. Damasso,et al.  TASTE: The Asiago Search for Transit timing variations of Exoplanets I. Overview and improved parameters for HAT-P-3b and HAT-P-14b , 2010, 1011.6395.

[29]  F. Bouchy,et al.  The HARPS search for southern extrasolar planets - XXV. Results from the metal-poor sample , 2010, 1011.2094.

[30]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[31]  K.A.Alsubai,et al.  Qatar-1b: A hot Jupiter orbiting a metal-rich K dwarf star , 2010 .

[32]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[33]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[34]  Joel D. Hartman,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND THE SURFACE GRAVITY OF HOT JUPITERS , 2010, 1004.4252.

[35]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[36]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[37]  G. P. D. Mello,et al.  EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES. II. κ1 Ceti, AN ANALOG OF THE SUN WHEN LIFE AROSE ON EARTH , 2010, 1003.3561.

[38]  A. F. Lanza,et al.  Hot Jupiters and the evolution of stellar angular momentum , 2009, Proceedings of the International Astronomical Union.

[39]  A. Alapini,et al.  An effective temperature calibration for solar type stars using equivalent width ratios - A fast and easy spectroscopic temperature estimation , 2009, 0912.2651.

[40]  F. Marzari,et al.  INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK , 2009, 0909.4375.

[41]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[42]  R. Greenberg,et al.  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.

[43]  P. J. Wheatley,et al.  High-precision photometry by telescope defocussing. I. The transiting planetary system WASP-5 , 2009, 0903.2139.

[44]  J. B. Laird,et al.  A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME , 2009, 0902.4802.

[45]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[46]  L. Testi,et al.  The Star Formation in the L1615/L1616 Cometary Cloud , 2008, 0807.0532.

[47]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[48]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[49]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[50]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[51]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[52]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[53]  Martin Pätzold,et al.  Constraints on the tidal dissipation factor of a main sequence star: The case of OGLE-TR-56b , 2007 .

[54]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[55]  D. Lin,et al.  Tidal Dissipation in Rotating Solar-Type Stars , 2007, astro-ph/0702492.

[56]  M. Barbieri,et al.  Properties of planets in binary systems - The role of binary separation , 2006, astro-ph/0610623.

[57]  M. Richmond,et al.  TASS Mark IV Photometric Survey of the Northern Sky , 2006, astro-ph/0610529.

[58]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[59]  E. Masana,et al.  Effective temperature scale and bolometric corrections from 2MASS photometry , 2006, astro-ph/0601049.

[60]  John C B Papaloizou,et al.  Planet formation and migration , 2006 .

[61]  A. Claret,et al.  Absolute dimensions of detached eclipsing binaries – I. The metallic‐lined system WW Aurigae , 2005, astro-ph/0507629.

[62]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[63]  N. C. Santos,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003 .

[64]  H. Rauer,et al.  Where Are the Massive Close-in Extrasolar Planets? , 2002 .

[65]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[66]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[67]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[68]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[69]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[70]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[71]  O. C. Wilson,et al.  Ca II H and K measurements made at Mount Wilson Observatory, 1966-1983 , 1991 .

[72]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[73]  N. O. Weiss,et al.  The relation between stellar rotation rate and activity cycle periods , 1984 .

[74]  V. Straižys,et al.  Fundamental stellar parameters derived from the evolutionary tracks , 1981 .

[75]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[76]  D. B. McLaughlin Some results of a spectrographic study of the Algol system. , 1924 .

[77]  R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .