Engineering of lithium-metal anodes towards a safe and stable battery

Abstract Currently, the state-of-the-art lithium-ion batteries (LIBs) are the most widely used energy storage devices and have brought a great impact on our daily life. However, even many strategies have been reported to improve the energy density, these LIBs still can not meet the rapidly growing demand from the many lately emerged devices. During the pursue of higher energy densities, lithium-metal batteries (LMBs) have been the most promising candidates of the next-generation energy storage devices. Unfortunately, the Li-metal anode usually induces severe safety concerns and inferior cycle performance, because of the dendrite growth, high reactivity, and infinite volume changes of Li metal. As a result, these problems limit the commercial application of LMBs and must be resolved prior to the practical deployment of LMBs. In this review, we will firstly discuss the failure mechanisms of Li-metal anodes and introduce latest characterization technologies to study dendritic Li formation. The advances to improve the safety and performance of Li metal anode through electrolyte modification, interfacial engineering, solid-state electrolyte incorporation, and host materials design will then be comprehensively summarized and discussed. Lastly, we will conclude by summarizing the challenges in the current research on LMBs and highlight the future perspectives as well. Through this review, we hope to present the latest developments of the Li metal anode materials for the readers, and also shed light on the possible solutions for the current issues in order to accelerate both fundamental research and practical deployment of the various LMBs.

[1]  O. Efimov,et al.  Lithium surface protection by polyacetylene in situ polymerization , 2006 .

[2]  A. Menon,et al.  Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes , 2018 .

[3]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[4]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[6]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[7]  Giao T. M. Nguyen,et al.  Flexible Solid Polymer Electrolytes Based on Nitrile Butadiene Rubber/Poly(ethylene oxide) Interpenetrating Polymer Networks Containing Either LiTFSI or EMITFSI , 2011 .

[8]  Shuru Chen,et al.  General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. , 2017, Journal of the American Chemical Society.

[9]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[10]  S. Tobishima,et al.  Dependence of lithium metal secondary cell performance on lithium cation solvation state , 1999 .

[11]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[12]  D. Aurbach,et al.  Ethylmethylcarbonate, a Promising Solvent for Li‐Ion Rechargeable Batteries , 1996 .

[13]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[14]  Jun Liu,et al.  In situ 7 Li and 133 Cs nuclear magnetic resonance investigations on the role of Cs + additive in lithium-metal deposition process , 2016 .

[15]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[16]  M. Lai,et al.  All solid state lithium ion rechargeable batteries using NASICON structured electrolyte , 2013 .

[17]  Peng Gao,et al.  Li metal coated with amorphous Li 3 PO 4 via magnetron sputtering for stable and long-cycle life lithium metal batteries , 2017 .

[18]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[19]  J. Chai,et al.  An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries , 2017 .

[20]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[21]  E. Peled,et al.  An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries , 1998 .

[22]  M. Mackay,et al.  Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries , 2012 .

[23]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[24]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[25]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[26]  Lei Zhang,et al.  Long lifespan lithium metal anodes enabled by Al2O3 sputter coating , 2018 .

[27]  S. Choudhury,et al.  Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: application in lithium–sulfur batteries , 2016, 1604.04241.

[28]  S. Choudhury,et al.  Designer interphases for the lithium-oxygen electrochemical cell , 2017, Science Advances.

[29]  Eric C Evarts Lithium batteries: To the limits of lithium , 2015, Nature.

[30]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[31]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[32]  John P. Sullivan,et al.  Lithium Fiber Growth on the Anode in a Nanowire Lithium Ion Battery During Charging , 2011 .

[33]  V. Koch,et al.  The Stability of the Secondary Lithium Electrode in Tetrahydrofuran‐Based Electrolytes , 1978 .

[34]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[35]  Henghui Xu,et al.  Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[36]  Ya‐Xia Yin,et al.  A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. , 2018, Angewandte Chemie.

[37]  Christopher J. Ellison,et al.  New battery strategies with a polymer/Al2O3 separator , 2014 .

[38]  Zhiyuan Lin,et al.  Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery , 2017 .

[39]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[40]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[41]  Xinchun Chen,et al.  Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating , 2018 .

[42]  Feng Wu,et al.  A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium–sulfur batteries , 2017 .

[43]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[44]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[45]  J. Vaughey,et al.  Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes , 2012 .

[46]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[47]  Chilin Li,et al.  Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries. , 2017, ACS applied materials & interfaces.

[48]  S. Prabaharan,et al.  Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+PVdF–HFP (copolymer) , 2004 .

[49]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[50]  Yifu Yang,et al.  Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries , 2016 .

[51]  J. Foos,et al.  Lithium Cycling in Polymethoxymethane Solvents , 1983 .

[52]  Doron Aurbach,et al.  Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF 3 ÑCF 2 CF 3 Ö 3 Solutions for Rechargeable Li-Ion Batteries , 2004 .

[53]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[54]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[55]  Chong Yan,et al.  Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes , 2018 .

[56]  D. Aurbach,et al.  The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems , 1989 .

[57]  Wenzhi Li,et al.  A review of application of carbon nanotubes for lithium ion battery anode material , 2012 .

[58]  Reza S. Yassar,et al.  Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery , 2011 .

[59]  Jianchuang Wang,et al.  Effects of the volume changes and elastic-strain energies on the phase transition in the Li-Sn battery , 2016 .

[60]  Brian C. H. Steele,et al.  Poly(ethylene oxide) electrolytes for operation at near room temperature , 1985 .

[61]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[62]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[63]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[64]  A. Ohta,et al.  Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy , 1998 .

[65]  Hongming Zhou,et al.  LiPF6 and lithium difluoro(oxalato)borate/ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode , 2013 .

[66]  K. Uosaki,et al.  Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries , 2017 .

[67]  H. Amiri,et al.  Impedance study of PVA/PEG/LiClO4/TiO2 nanocomposite solid polymer blend electrolyte , 2017, Journal of Materials Science: Materials in Electronics.

[68]  Tingzheng Hou,et al.  Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode , 2017 .

[69]  J. Yamaki,et al.  Cycling performance and safety of rechargeable lithium cells with binary and ternary mixed solvent electrolytes , 1999 .

[70]  Hong‐Jie Peng,et al.  Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. , 2018, Angewandte Chemie.

[71]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[72]  V. Koch,et al.  Structure‐Reactivity Relationships of Methylated Tetrahydrofurans with Lithium , 1980 .

[73]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[74]  Qiang Zhang,et al.  Review of nanostructured current collectors in lithium–sulfur batteries , 2017, Nano Research.

[75]  M. Ishikawa,et al.  Charge/Discharge Characteristics of Carbon Fiber with Graphite Structure in Organic Electrolytes Containing Lithium Trifluoromethanesulfate and Lithium Hexafluorophosphate , 1994 .

[76]  Yifu Yang,et al.  Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries , 2018 .

[77]  A. Dolocan,et al.  K+ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase , 2016 .

[78]  S. Brummer,et al.  Efficiencies of Cycling Lithium on a Lithium Substrate in Propylene Carbonate , 1978 .

[79]  Lei Cheng,et al.  The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[80]  K. Hashimoto,et al.  Effects of contaminant water on coulombic efficiency of lithium deposition/dissolution reactions in tetraglyme-based electrolytes , 2017 .

[81]  Dong‐Gyun Kim,et al.  Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications , 2013 .

[82]  L. Archer,et al.  Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields , 2017 .

[83]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[84]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[85]  J. Yamaki,et al.  Mixed solvent electrolyte for high voltage lithium metal secondary cells , 1999 .

[86]  Jiulin Wang,et al.  A stable organic–inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries , 2017 .

[87]  John B. Goodenough,et al.  Low‐Cost Hollow Mesoporous Polymer Spheres and All‐Solid‐State Lithium, Sodium Batteries , 2015 .

[88]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[89]  Li-Jun Wan,et al.  Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries , 2012, Nano Research.

[90]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[91]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[92]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries , 2015, Advanced materials.

[93]  K. Takeno,et al.  Effects of nonaqueous electrolyte solutions mixed with carbonate-modified siloxane on charge–discharge performance of negative electrodes for secondary lithium batteries , 2013 .

[94]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[95]  K. Morigaki Analysis of the interface between lithium and organic electrolyte solution , 2002 .

[96]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[97]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[98]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[99]  Gary W. Rubloff,et al.  Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase , 2017 .

[100]  S. Dou,et al.  Novel surface coating strategies for better battery materials , 2017 .

[101]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[102]  Ning Zhao,et al.  All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes , 2015 .

[103]  Kyle R Fenton,et al.  Fast Lithium‐Ion Conducting Thin‐Film Electrolytes Integrated Directly on Flexible Substrates for High‐Power Solid‐State Batteries , 2011, Advanced materials.

[104]  T. Mallouk,et al.  Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. , 2017, Journal of the American Chemical Society.

[105]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[106]  Jiayan Luo,et al.  Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes , 2017 .

[107]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[108]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[109]  Jiayan Luo,et al.  Bending‐Tolerant Anodes for Lithium‐Metal Batteries , 2018, Advanced materials.

[110]  P. Bro,et al.  Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte , 1974 .

[111]  Jian-jun Zhang,et al.  In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries , 2016, Advanced science.

[112]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[113]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[114]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[115]  C. Bernuy-López,et al.  Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics , 2014 .

[116]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[117]  Bing Sun,et al.  Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes , 2018 .

[118]  Martin Winter,et al.  Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes , 1993 .

[119]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[120]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[121]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[122]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[123]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[124]  Wenping Sun,et al.  Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties. , 2012, ACS applied materials & interfaces.

[125]  Yongwon Lee,et al.  Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries , 2015 .

[126]  Lithium Electrode Morphology during Cycling in Lithium Cells , 1988 .

[127]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[128]  Yi Pan,et al.  Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes , 2006 .

[129]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[130]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[131]  Lin Liu,et al.  Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode , 2017 .

[132]  Hao Zhang,et al.  ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes , 2018 .

[133]  Shailesh Upreti,et al.  Electrochemical performance of Al–Si–graphite composite as anode for lithium–ion batteries , 2011 .

[134]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[135]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[136]  Yang Zhao,et al.  Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review , 2015 .

[137]  Ji‐Guang Zhang,et al.  Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science , 2017 .

[138]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[139]  Wei He,et al.  High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries , 2015 .

[140]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[141]  Shuhong Yu,et al.  Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance , 2017 .

[142]  H. Ota,et al.  Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. II. Surface chemistry , 2004 .

[143]  Eongyu Yi,et al.  Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles , 2017 .

[144]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[145]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[146]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[147]  Venkataraman Thangadurai,et al.  Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .

[148]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[149]  L. Archer,et al.  Regulating Li deposition at artificial solid electrolyte interphases , 2017 .

[150]  Lee Yong Gun,et al.  Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection , 2017 .

[151]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[152]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[153]  Shizhao Xiong,et al.  On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries , 2013 .

[154]  Yayuan Liu,et al.  Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework , 2017, Science Advances.

[155]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[156]  B. Scrosati,et al.  High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries , 2007 .

[157]  Jong‐Chan Lee,et al.  2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries , 2017 .

[158]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[159]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[160]  Hui Wu,et al.  Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium Metal Anode. , 2017, ACS applied materials & interfaces.

[161]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[162]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[163]  Yuyan Shao,et al.  Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism , 2014 .

[164]  Feng Li,et al.  Carbon materials for Li–S batteries: Functional evolution and performance improvement , 2016 .

[165]  G. Rubloff,et al.  ALD Protection of Li‐Metal Anode Surfaces – Quantifying and Preventing Chemical and Electrochemical Corrosion in Organic Solvent , 2016 .

[166]  A. Kawakami,et al.  Electronic structures and electrochemical properties of LiPF6−n(CF3)n , 2001 .

[167]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[168]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[169]  V. Koch,et al.  Electrochemical Stability of LiMF6 ( M = P , As , Sb ) in Tetrahydrofuran and Sulfolane , 1988 .

[170]  C. Yoon,et al.  Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery. , 2017, ACS applied materials & interfaces.

[171]  Jinghua Guo,et al.  The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries , 2018 .

[172]  Yan‐Bing He,et al.  Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery , 2014 .

[173]  F. Ding,et al.  Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[174]  Z. Wen,et al.  Pre-modified Li 3 PS 4 based interphase for lithium anode towards high-performance Li-S battery , 2018 .

[175]  T. Osaka,et al.  Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO{sub 2} addition , 1997 .

[176]  Yang Jin,et al.  Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode , 2017 .

[177]  N. Togasaki,et al.  Enhancement effect of trace H2O on the charge-discharge cycling performance of a Li metal anode , 2014 .

[178]  Ji‐Guang Zhang,et al.  Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains , 2017 .

[179]  Yonggang Yao,et al.  Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode , 2017, Advanced materials.

[180]  D. Jeong,et al.  All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid , 2017 .

[181]  Jean-Marie Tarascon,et al.  In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries , 1998 .

[182]  A. Arof,et al.  FTIR studies of PVC/PMMA blend based polymer electrolytes. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[183]  J. Kennedy,et al.  Preparation and conductivity measurements of SiS2Li2S glasses doped with LiBr and LiCl , 1986 .

[184]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[185]  V. Koch,et al.  Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. Technical report , 1981 .

[186]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[187]  Z. Wen,et al.  Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries , 2011 .

[188]  Hong‐Jie Peng,et al.  Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes , 2018 .

[189]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[190]  Yang‐Kook Sun,et al.  Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode , 2013 .

[191]  Yongchang Liu,et al.  Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries , 2017 .

[192]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[193]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .