DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission.

Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.

[1]  D. Perkins-Balding,et al.  Location, degree, and direction of DNA bending associated with the Hin recombinational enhancer sequence and Fis-enhancer complex , 1997, Journal of bacteriology.

[2]  M. Simon,et al.  Hin-mediated site-specific recombination requires two 26 by recombination sites and a 60 by recombinational enhancer , 1985, Cell.

[3]  D. Szeto,et al.  Function of a bacterial activator protein that binds to transcriptional enhancers. , 1989, Science.

[4]  N. Cozzarelli,et al.  Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. , 1994, Journal of molecular biology.

[5]  M. Haykinson,et al.  DNA looping and the helical repeat in vitro and in vivo: effect of HU protein and enhancer location on Hin invertasome assembly. , 1993, The EMBO journal.

[6]  R. Gourse,et al.  Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength. , 1994, Journal of molecular biology.

[7]  C. S. Hulton,et al.  DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. , 1995, The EMBO journal.

[8]  H. Buc,et al.  DNA deformation in nucleoprotein complexes between RNA polymerase, cAMP receptor protein and the lac UV5 promoter probed by singlet oxygen. , 1992, The EMBO journal.

[9]  A. Oppenheim,et al.  Integration host factor stimulates the phage lambda pL promoter. , 1990, Journal of molecular biology.

[10]  R. C. Johnson,et al.  Alignment of recombination sites in Hin-mediated site-specific DNA recombination. , 1991, Genes & development.

[11]  M. Zacharias,et al.  Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2‐ and tac promoter on growth‐rate control and stringent sensitivity. , 1989, The EMBO journal.

[12]  A. Oppenheim,et al.  Supercoiling, integration host factor, and a dual promoter system, participate in the control of the bacteriophage λ pL promoter☆ , 1992 .

[13]  P. Sander,et al.  Mechanisms of upstream activation of the rrnD promoter P1 of Escherichia coli. , 1993, The Journal of biological chemistry.

[14]  R. Gourse,et al.  Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter , 1997, The EMBO journal.

[15]  S. Darst,et al.  Crystal Structure of a σ70 Subunit Fragment from E. coli RNA Polymerase , 1996, Cell.

[16]  B. Magasanik,et al.  Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter , 1986, Cell.

[17]  P. van de Putte,et al.  DNA inversions in phages and bacteria. , 1992, Trends in genetics : TIG.

[18]  N. Cozzarelli,et al.  Analysis of strand exchange and DNA binding of enhancer‐independent Gin recombinase mutants. , 1993, The EMBO journal.

[19]  D. Crothers,et al.  Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. , 1991, Journal of molecular biology.

[20]  N R Cozzarelli,et al.  Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. , 1996, Journal of molecular biology.

[21]  R. Burgess,et al.  Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening. , 1985, Journal of molecular biology.

[22]  H. Buc,et al.  Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. , 1987, Journal of molecular biology.

[23]  J. Lefèvre,et al.  Effect of superhelicity on the transcription from the tet promoter of pBR322. Abortive initiation and unwinding experiments. , 1984, Nucleic acids research.

[24]  A. Travers,et al.  FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. , 1995, The EMBO journal.

[25]  V. de Lorenzo,et al.  Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. , 1994, Microbiological reviews.

[26]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Travers,et al.  FIS modulates growth phase‐dependent topological transitions of DNA in Escherichia coli , 1997, Molecular microbiology.

[28]  M. O’Donnell,et al.  An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps , 1994, Cell.

[29]  S. Iida,et al.  Site-specific DNA inversion is enhanced by a DNA sequence element in cis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Connolly,et al.  Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Travers,et al.  Stabilization of DNA Microloops by FIS — A Mechanism for Torsional Transmission in Transcription Activation and DNA Inversion , 1997 .

[32]  W. McClure,et al.  Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps. , 1985, Biochemistry.

[33]  D. Sherratt,et al.  Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions , 1989, Cell.

[34]  D. Ayers,et al.  Promoter recognition by Escherichia coli RNA polymerase. Role of the spacer DNA in functional complex formation. , 1989, Journal of molecular biology.

[35]  E. Geiduschek,et al.  A direct interaction between a DNA‐tracking protein and a promoter recognition protein: implications for searching DNA sequence. , 1996, The EMBO journal.

[36]  H. Echols,et al.  DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Bracco,et al.  Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. , 1989, The EMBO journal.

[38]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[39]  A. Ansari,et al.  Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR , 1992, Nature.

[40]  T. Bickle,et al.  Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. , 1987, Journal of molecular biology.

[41]  T. Ohyama,et al.  Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation. , 1995, Journal of molecular biology.

[42]  R. C. Johnson,et al.  Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. , 1996, Journal of molecular biology.

[43]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[44]  L. Sun,et al.  Regulation of the Escherichia coli nrd operon: role of DNA supercoiling , 1994, Journal of bacteriology.

[45]  D. Crothers,et al.  Catabolite activator protein-induced DNA bending in transcription initiation. , 1991, Journal of molecular biology.

[46]  T. Hoover,et al.  Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Kustu,et al.  Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Gallant,et al.  Two Compounds implicated in the Function of the RC Gene of Escherichia coli , 1969, Nature.

[49]  A. Lamond,et al.  Stringent control of bacterial transcription , 1985, Cell.

[50]  D. Patel,et al.  NMR studies of DNA conformation and dynamics in solution. , 1983, Cold Spring Harbor symposia on quantitative biology.

[51]  J. Widom Molecular biology: DNA bending and kinking , 1984, Nature.

[52]  L. Bosch,et al.  Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination. , 1987, Nucleic Acids Research.

[53]  A. Travers,et al.  Promoter Sequence for Stringent Control of Bacterial Ribonucleic Acid Synthesis , 1980, Journal of bacteriology.

[54]  J. Wang,et al.  Angular alteration of the DNA helix by E. coli RNA polymerase. , 1972, Nature: New biology.

[55]  R. Gourse,et al.  The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. , 1995, Journal of molecular biology.

[56]  Walter Gilbert,et al.  Starting and Stopping Sequences for the RNA Polymerase , 1976 .

[57]  Reid C. Johnson,et al.  The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion , 1996, Current Biology.

[58]  M. Simon,et al.  Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity , 1987, Nature.

[59]  K. BergerD,et al.  in vitro転写活性化細菌エンハンサ結合蛋白質NIFAの単離触媒ドメイン 活性化はNIFLで阻害される , 1994 .

[60]  S. Kustu,et al.  Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Ishihama,et al.  DNA flexibility of the UP element is a major determinant for transcriptional activation at the Escherichia coli acetate promoter. , 1997, Nucleic acids research.

[62]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[63]  A. Travers,et al.  The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. , 1993, The EMBO journal.

[64]  A. Lamond Supercoiling response of a bacterial tRNA gene. , 1985, The EMBO journal.

[65]  J. Peters,et al.  Action at a Distance , 2020 .

[66]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[67]  J. Mizushima-Sugano,et al.  Regulation of the expression of the tufB operon: DNA sequences directly involved in the stringent control. , 1985, The EMBO journal.

[68]  P. V. von Hippel,et al.  Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. , 1997, Journal of molecular biology.

[69]  N. Cozzarelli,et al.  Gin-mediated recombination of catenated and knotted DNA substrates: Implications for the mechanism of interaction between cis-acting sites , 1989, Cell.

[70]  K. Kirkegaard,et al.  Changes in the DNA structure of the lac UV5 promoter during formation of an open complex with Escherichia coli RNA polymerase. , 1985, Biochemistry.

[71]  J. Wootton,et al.  Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. , 1986, The EMBO journal.

[72]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. , 1991, Journal of molecular biology.

[73]  A. Lamond,et al.  Requirement for an upstream element for optimal transcription of a bacterial tRNA gene , 1983, Nature.

[74]  M. Volkert,et al.  RNA polymerase alpha subunit binding site in positively controlled promoters: a new model for RNA polymerase‐promoter interaction and transcriptional activation in the Escherichia coli ada and aidB genes. , 1995, The EMBO journal.

[75]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[76]  M. Simon,et al.  The role of negative supercoiling in Hin-mediated site-specific recombination. , 1992, The Journal of biological chemistry.

[77]  R. Gourse,et al.  DNA determinants of rRNA synthesis in E. coli: Growth rate dependent regulation, feedback inhibition, upstream activation, antitermination , 1986, Cell.

[78]  J. Gralla,et al.  All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. , 1987, Journal of molecular biology.

[79]  S. Kustu,et al.  The isolated catalytic domain of NIFA, a bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[80]  G. W. Hatfield,et al.  Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Wedel,et al.  A bacterial enhancer functions to tether a transcriptional activator near a promoter. , 1990, Science.

[82]  C. Dorman,et al.  Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function , 1994, Molecular microbiology.

[83]  S. Kustu,et al.  The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons , 1990, Cell.

[84]  E. Geiduschek,et al.  Dual targets of a transcriptional activator that tracks on DNA , 1997, The EMBO journal.

[85]  H. Bujard,et al.  Context-dependent effects of upstream A-tracts. Stimulation or inhibition of Escherichia coli promoter function. , 1994, Journal of molecular biology.

[86]  E. Geiduschek,et al.  Transcriptional activation by a DNA-tracking protein: Structural consequences of enhancement at the T4 late promoter , 1994, Cell.

[87]  N. Cozzarelli,et al.  Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action , 1990, Cell.

[88]  H. Bujard,et al.  Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. , 1994, Journal of molecular biology.

[89]  E. Geiduschek,et al.  An RNA polymerase-binding protein that is required for communication between an enhancer and a promoter. , 1990, Science.

[90]  S. Iida,et al.  Bent DNA is needed for recombinational enhancer activity in the site-specific recombination system Cin of bacteriophage P1. The role of FIS protein. , 1989, Journal of molecular biology.

[91]  A. Travers DNA bending and kinking — sequence dependence and function , 1991 .

[92]  B. Magasanik,et al.  Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[93]  E. Geiduschek,et al.  Transcriptional Activation by a Topologically Linkable Protein: Forging a Connection Between Replication and Gene Activity , 1997 .

[94]  R. Gourse,et al.  Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[95]  A. Lamond,et al.  Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial tRNA gene , 1985, Cell.

[96]  S. Adhya,et al.  An arcane role of DNA in transcription activation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R. Wagner,et al.  Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region , 1992, Molecular microbiology.

[98]  S. Riva,et al.  Coupling of late transcription to viral replication in bacteriophage T4 development. , 1970, Journal of molecular biology.

[99]  T. Hermann,et al.  Translocation of DNA-Dependent E. coli RNA Polymerase During RNA Synthesis , 1997 .

[100]  R. Elford,et al.  Sequence determinants for promoter strength in the leuV operon of Escherichia coli. , 1988, Gene.

[101]  W. Arber,et al.  Mutational analysis of a prokaryotic recombinational enhancer element with two functions. , 1989, The EMBO journal.

[102]  R. Wagner,et al.  Evidence for a regulatory function of the histone‐like Escherichia coli protein H‐NS in ribosomal RNA synthesis , 1994, Molecular microbiology.

[103]  A. Travers A tRNATyr promoter with an altered in vitro response to ppgpp. , 1980, Journal of molecular biology.

[104]  R. Kahmann,et al.  G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor , 1985, Cell.

[105]  H. Heumann,et al.  Flexibility of the DNA enhances promoter affinity of Escherichia coli RNA polymerase. , 1991, The EMBO journal.

[106]  G. Evan,et al.  Metabolism of c‐myc gene products: c‐myc mRNA and protein expression in the cell cycle. , 1985, EMBO Journal.

[107]  J. Geiselmann,et al.  Influence of DNA geometry on transcriptional activation in Escherichia coli. , 1996, The EMBO journal.

[108]  T. Hermann,et al.  Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex. , 1997, Nucleic acids research.

[109]  J. Gralla,et al.  Spacer mutations in the lac ps promoter. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[110]  K Rippe,et al.  Action at a distance: DNA-looping and initiation of transcription. , 1995, Trends in biochemical sciences.

[111]  M Carmona,et al.  Activation of transcription at sigma 54-dependent promoters on linear templates requires intrinsic or induced bending of the DNA. , 1996, Journal of molecular biology.

[112]  D. Lilley,et al.  Modulation of tyrT promoter activity by template supercoiling in vivo. , 1994, The EMBO journal.

[113]  D. Sherratt,et al.  Site-specific recombination by Tn3 resolvase. , 1989, Trends in genetics : TIG.

[114]  R. Wartell,et al.  Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters. , 1987, Nucleic acids research.

[115]  H. Drew,et al.  Negative supercoiling induces spontaneous unwinding of a bacterial promoter. , 1985, The EMBO journal.

[116]  M. Zacharias,et al.  Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. , 1992, Biochemistry.

[117]  C. Nickerson,et al.  Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters , 1995, Journal of bacteriology.