Artificial Intelligence-Based Prediction Models for Energy Performance of Residential Buildings
暂无分享,去创建一个
[1] Aykut Ekinci,et al. Türkiye’de banka başarısızlıklarının tahmini üzerine bir uygulama , 2011 .
[2] Halil Ibrahim Erdal. Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction , 2013, Eng. Appl. Artif. Intell..
[3] Halil Ibrahim Erdal,et al. A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures , 2013 .
[4] Halil Ibrahim Erdal,et al. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms , 2013 .
[5] Hacer Yumurtaci Aydogmus,et al. The prediction of the wind speed at different heights by machine learning methods , 2016 .
[6] Ersin Namli,et al. Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better? , 2015, Computational Economics.
[7] Ersin Namli,et al. High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform , 2013, Eng. Appl. Artif. Intell..
[8] Yusuf Yildiz,et al. Identification of the building parameters that influence heating and cooling energy loads for apartm , 2011 .
[9] Min-Yuan Cheng,et al. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines , 2014, Appl. Soft Comput..
[10] Sakir Esnaf,et al. Estimation of the manufacturing industry sub-sectors' capacity utilization rates using support vector machines , 2013, Artif. Intell. Res..
[11] Hamit Erdal. Makine Öğrenmesi Yöntemlerinin İnşaat Sektörüne Katkısı: Basınç Dayanımı Tahminlemesi , 2015 .
[12] Ersin Namli,et al. Comparing ensembles of decision trees and neural networks for one-day-ahead streamflow prediction , 2013 .
[13] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[14] Hamit Erdal,et al. Dalgacık Dönüşümü ile Beton Basınç Dayanım Tahmininin İyileştirilmesi , 2016 .
[15] T. Yapraklı,et al. Firma Başarısızlığı Tahminlemesi: Makine Öğrenmesine Dayalı Bir Uygulama , 2016 .
[16] Ersin Namli,et al. A comparative assessment of bagging ensemble models for modeling concrete slump flow , 2015 .
[17] Ersin Namli,et al. Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample , 2016 .
[18] Giuliano Dall'O',et al. Application of neural networks for evaluating energy performance certificates of residential buildings , 2016 .
[19] Osman Demirdöğen,et al. Comparing various machine learning methods for prediction of patient revisit intention: a case study , 2017 .
[20] Mehmet Fatih Amasyali,et al. Predictions of oil/chemical tanker main design parameters using computational intelligence techniques , 2011, Appl. Soft Comput..
[21] Halil Ibrahim Erdal,et al. Optimizing the monthly crude oil price forecasting accuracy via bagging ensemble models , 2015 .
[22] Athanasios Tsanas,et al. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools , 2012 .