Artificial Intelligence-Based Prediction Models for Energy Performance of Residential Buildings

Although energy sources on the environment are limited, in all parts of life, energy requirement increases rapidly which depends on the increasing technology and population. This problem enforces researchers to study on energy efficiency, performance, and optimization. This paper presents artificial intelligence-based (AI) prediction models to estimate energy loads for residential buildings. The model was developed by using eight input parameters (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, glazing area distribution) related to two output parameters (heating and cooling loads).

[1]  Aykut Ekinci,et al.  Türkiye’de banka başarısızlıklarının tahmini üzerine bir uygulama , 2011 .

[2]  Halil Ibrahim Erdal Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction , 2013, Eng. Appl. Artif. Intell..

[3]  Halil Ibrahim Erdal,et al.  A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures , 2013 .

[4]  Halil Ibrahim Erdal,et al.  Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms , 2013 .

[5]  Hacer Yumurtaci Aydogmus,et al.  The prediction of the wind speed at different heights by machine learning methods , 2016 .

[6]  Ersin Namli,et al.  Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better? , 2015, Computational Economics.

[7]  Ersin Namli,et al.  High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform , 2013, Eng. Appl. Artif. Intell..

[8]  Yusuf Yildiz,et al.  Identification of the building parameters that influence heating and cooling energy loads for apartm , 2011 .

[9]  Min-Yuan Cheng,et al.  Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines , 2014, Appl. Soft Comput..

[10]  Sakir Esnaf,et al.  Estimation of the manufacturing industry sub-sectors' capacity utilization rates using support vector machines , 2013, Artif. Intell. Res..

[11]  Hamit Erdal Makine Öğrenmesi Yöntemlerinin İnşaat Sektörüne Katkısı: Basınç Dayanımı Tahminlemesi , 2015 .

[12]  Ersin Namli,et al.  Comparing ensembles of decision trees and neural networks for one-day-ahead streamflow prediction , 2013 .

[13]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[14]  Hamit Erdal,et al.  Dalgacık Dönüşümü ile Beton Basınç Dayanım Tahmininin İyileştirilmesi , 2016 .

[15]  T. Yapraklı,et al.  Firma Başarısızlığı Tahminlemesi: Makine Öğrenmesine Dayalı Bir Uygulama , 2016 .

[16]  Ersin Namli,et al.  A comparative assessment of bagging ensemble models for modeling concrete slump flow , 2015 .

[17]  Ersin Namli,et al.  Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample , 2016 .

[18]  Giuliano Dall'O',et al.  Application of neural networks for evaluating energy performance certificates of residential buildings , 2016 .

[19]  Osman Demirdöğen,et al.  Comparing various machine learning methods for prediction of patient revisit intention: a case study , 2017 .

[20]  Mehmet Fatih Amasyali,et al.  Predictions of oil/chemical tanker main design parameters using computational intelligence techniques , 2011, Appl. Soft Comput..

[21]  Halil Ibrahim Erdal,et al.  Optimizing the monthly crude oil price forecasting accuracy via bagging ensemble models , 2015 .

[22]  Athanasios Tsanas,et al.  Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools , 2012 .