The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies

The acquisition of deep near-IR imaging with Wide Field Camera 3 on the Hubble Space Telescope has provided the opportunity to study the very high redshift Universe. For galaxies up to z≈ 7.7 sufficient wavelength coverage exists to probe the rest-frame ultraviolet (UV) continuum without contamination from either Lyman α emission or the Lyman α break. In this work we use near-infrared (near-IR) imaging to measure the rest-frame UV continuum colours of galaxies at 4.7 < z < 7.7. We have carefully defined a colour–colour selection to minimize any inherent bias in the measured UV continuum slope for the drop-out samples. For the highest redshift sample (6.7 < z < 7.7), selected as zf850lp-band drop-outs, we find mean UV continuum colours approximately equal to zero (AB), consistent with a dust-free, solar metallicity, star-forming population (or a moderately dusty population of low metallicity). At lower redshift we find that the mean UV continuum colours of galaxies (over the same luminosity range) are redder, and that galaxies with higher luminosities are also slightly redder on average. One interpretation of this is that lower redshift and more luminous galaxies are dustier; however, this interpretation is complicated by the effects of the star formation history and metallicity and potentially the initial mass function on the UV continuum colours.

[1]  M. Jarvis,et al.  Star-forming galaxies at z approximate to 8-9 from Hubble Space Telescope/WFC3: implications for reionization , 2011 .

[2]  J. Dunlop,et al.  A robust sample of galaxies at redshifts 6.0 , 2011, 1102.4881.

[3]  J. Dunlop,et al.  A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.

[4]  S. Wilkins,et al.  New star-forming galaxies at z≈ 7 from Wide Field Camera Three imaging , 2011 .

[5]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[6]  M. Jarvis,et al.  Candidate z~8-9 Galaxies from WFC3 Imaging , 2010, 1006.3545.

[7]  M. Jarvis,et al.  Probing ∼L* Lyman‐break galaxies at z≈ 7 in GOODS‐South with WFC3 on Hubble Space Telescope , 2010 .

[8]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[9]  A. Saro,et al.  The cool side of Lyman alpha emitters , 2009, 0907.4989.

[10]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[11]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[12]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[13]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[14]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[15]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[16]  S. Borgani,et al.  Lyman alpha emitter evolution in the reionization epoch , 2009, 0907.0337.

[17]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[18]  M. Bremer,et al.  On contamination and completeness in z ≥ 5 Lyman-break galaxy surveys , 2007, 0712.2457.

[19]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[20]  L. Dunne,et al.  Type II supernovae as a significant source of interstellar dust , 2003, Nature.

[21]  L. Cowie,et al.  Approaching Reionization: The Evolution of the Lyα Forest from z = 4 to z = 6 , 2002, astro-ph/0202165.

[22]  B. Rocca-Volmerange,et al.  PEGASE.2, a metallicity-consistent spectral evolution model of galaxies: the documentation and the code , 1999, astro-ph/9912179.

[23]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[24]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[25]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[26]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[27]  C. Steidel,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995, astro-ph/9509089.

[28]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[29]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[30]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .