Combined excitotoxic–oxidative stress and the concept of non-cell autonomous pathology of ALS: Insights into motoneuron axonopathy and astrogliosis

[1]  S. K. Malhotra,et al.  Reactive astrocytes: cellular and molecular cues to biological function , 1997, Trends in Neurosciences.

[2]  P. Beart,et al.  Cyclothiazide and GYKI 52466 modulate AMPA receptor-mediated apoptosis in cortical neuronal cultures , 1999, Neuroscience Letters.

[3]  P. Shaw,et al.  Science, medicine, and the future: Motor neurone disease , 1999 .

[4]  P. Bär Motor neuron disease in vitro: the use of cultured motor neurons to study amyotrophic lateral sclerosis. , 2000, European journal of pharmacology.

[5]  W. Robberecht,et al.  Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons , 2000, Journal of the Neurological Sciences.

[6]  G.,et al.  Annexin V for Flow Cytometric Detection of Phosphatidylserine Expression on B Cells Undergoing Apoptosis , 2000 .

[7]  K. Talbot,et al.  Motor neurone disease , 2002, Postgraduate medical journal.

[8]  J. Weiss,et al.  Disruption of Glial Glutamate Transport by Reactive Oxygen Species Produced in Motor Neurons , 2003, The Journal of Neuroscience.

[9]  E. Hughes,et al.  Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. , 2004, Brain research. Molecular brain research.

[10]  L. Barbeito,et al.  A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis , 2004, Brain Research Reviews.

[11]  R. D. O'Shea,et al.  Binding and transport of [3H](2S,4R)‐ 4‐methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes , 2004, Journal of neuroscience research.

[12]  Mark Ellisman,et al.  Absence of Glial Fibrillary Acidic Protein and Vimentin Prevents Hypertrophy of Astrocytic Processes and Improves Post-Traumatic Regeneration , 2004, The Journal of Neuroscience.

[13]  Jianzheng Zhou,et al.  Glutamate Transporter Cluster Formation in Astrocytic Processes Regulates Glutamate Uptake Activity , 2004, The Journal of Neuroscience.

[14]  M. Nilsson,et al.  Astrocyte activation and reactive gliosis , 2005, Glia.

[15]  G. McCormack,et al.  Glutamate induces rapid loss of axonal neurofilament proteins from cortical neurons in vitro , 2005, Experimental Neurology.

[16]  G. Bonvento,et al.  Neuron–astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy , 2006, Journal of neurochemistry.

[17]  W. Robberecht,et al.  The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[18]  D. Pow,et al.  Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: Evidence for delayed up-regulation and redistribution of GLT-1 , 2006, Neurochemistry International.

[19]  J. Rothstein,et al.  Mechanisms of Disease: astrocytes in neurodegenerative disease , 2006, Nature Clinical Practice Neurology.

[20]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[21]  L. Chimelli,et al.  Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis , 2006, Neuroscience Letters.

[22]  M. Haber,et al.  Reshaping neuron-glial communication at hippocampal synapses. , 2005, Neuron glia biology.

[23]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[24]  Kevin Eggan,et al.  Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model , 2007, Nature Neuroscience.

[25]  R. D. O'Shea,et al.  Transporters for L‐glutamate: An update on their molecular pharmacology and pathological involvement , 2007, British journal of pharmacology.

[26]  J. Vickers,et al.  Excitotoxicity mediated by non‐NMDA receptors causes distal axonopathy in long‐term cultured spinal motor neurons , 2007, The European journal of neuroscience.

[27]  T. Raju,et al.  Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients , 2007, Journal of the Neurological Sciences.

[28]  M. Robinson,et al.  The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention , 2007, Neurochemistry International.

[29]  J. Morris,et al.  TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. , 2007, The American journal of pathology.

[30]  J. Silver,et al.  CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure , 2008, Experimental Neurology.

[31]  P. Carmeliet,et al.  Protective Role of Reactive Astrocytes in Brain Ischemia , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  K. Talbot,et al.  Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS , 2008, Progress in Neurobiology.

[33]  P. Beart,et al.  Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis , 2009, Glia.

[34]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[35]  A. Rigalli,et al.  Experimental Models for the Study of Diabetes , 2009 .

[36]  R. Tapia,et al.  Molecular Neurodegeneration BioMed Central Review , 2009 .

[37]  C. L. Lau,et al.  GABAergic striatal neurons exhibit caspase‐independent, mitochondrially mediated programmed cell death , 2009, Journal of neurochemistry.

[38]  Philip M. Beart,et al.  Regulation of glutamate transporters in astrocytes: Evidence for a relationship between transporter expression and astrocytic phenotype , 2009, Neurotoxicity Research.

[39]  P. Shaw,et al.  Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis , 2009, Journal of Neurology.

[40]  D. Cleveland,et al.  Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond , 2009, The Journal of cell biology.

[41]  Y. Matsui,et al.  A semiquantitative analysis of reactive astrogliosis demonstrates its correlation with the number of intact motor neurons after transient spinal cord ischemia. , 2009, The Journal of thoracic and cardiovascular surgery.

[42]  Don W. Cleveland,et al.  Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond , 2009 .

[43]  Anthony Brown,et al.  A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport , 2010, Molecular Neurodegeneration.

[44]  P. Beart,et al.  Multifaceted deaths orchestrated by mitochondria in neurones. , 2010, Biochimica et biophysica acta.

[45]  A. Acevedo-Arozena,et al.  SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments , 2011, Mammalian Genome.

[46]  I. Ferrer,et al.  Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS , 2011, Acta Neuropathologica.

[47]  A. Ratti,et al.  Dysregulation of axonal transport and motorneuron diseases , 2011, Biology of the cell.

[48]  J. Vickers,et al.  Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology , 2011, Neurobiology of Aging.

[49]  V. Perreau,et al.  Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor Fasudil reveals cytoskeletal and pro‐survival responses , 2012, Journal of cellular physiology.

[50]  R. Pedersen,et al.  Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms , 2011, Cell Death and Differentiation.