The heart of the swarm: K2 photometry and rotational characteristics of 56 Jovian Trojan asteroids

We present fully covered phased light curves for 56 Jovian Trojan asteroids as observed by the K2 mission of the Kepler space telescope. This set of objects has been monitored during Campaign 6 and represents a nearly unbiased subsample of the population of small solar system bodies. We derived precise periods and amplitudes for all Trojans, and found their distributions to be compatible with the previous statistics. We point out, however, that ground-based rotation periods are often unreliable above 20 h, and we find an overabundance of rotation periods above 60 h compared with other minor planet populations. From amplitude analysis we derive a rate of binarity of 20 ± 5%. Our spin rate distribution confirms the previously obtained spin barrier of ~5 h and the corresponding ~0.5 g cm -3 cometary-like density limit, also suggesting a high internal porosity for Jovian Trojans. One of our targets, asteroid 65227 exhibits a double rotation period, which can either be due to binarity or the outcome of a recent collision.

[1]  F. Henry,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.

[2]  Cs. Kiss,et al.  Uninterrupted optical light curves of main-belt asteroids from the K2 mission , 2016, 1609.02759.

[3]  Ian Wong,et al.  A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS , 2016, 1607.04133.

[4]  University of Sydney,et al.  LARGE SIZE AND SLOW ROTATION OF THE TRANS-NEPTUNIAN OBJECT (225088) 2007 OR10 DISCOVERED FROM HERSCHEL AND K2 OBSERVATIONS , 2016, 1603.03090.

[5]  M. Mommert,et al.  Nereid from space: Rotation, size and shape analysis from K2, Herschel and Spitzer observations , 2016, 1601.02395.

[6]  Rotation lightcurves of small jovian Trojan asteroids , 2015 .

[7]  T. Grav,et al.  The Complex History of Trojan Asteroids , 2015, 1506.01658.

[8]  Z. Dai,et al.  A UNIFIED ENERGY-RESERVOIR MODEL CONTAINING CONTRIBUTIONS FROM 56 Ni ?> AND NEUTRON STARS AND ITS IMPLICATION FOR LUMINOUS TYPE Ic SUPERNOVAE , 2015, 1504.04704.

[9]  E. Ofek,et al.  ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY , 2015, 1504.04041.

[10]  L. Kiss,et al.  PUSHING THE LIMITS: K2 OBSERVATIONS OF THE TRANS-NEPTUNIAN OBJECTS 2002 GV31 and (278361) 2007 JJ43 , 2015, 1504.03671.

[11]  L. Kiss,et al.  MAIN-BELT ASTEROIDS IN THE K2 ENGINEERING FIELD OF VIEW , 2015, 1501.05967.

[12]  J. Masiero,et al.  BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES , 2014, 1412.1853.

[13]  J. Emery,et al.  THE DIFFERING MAGNITUDE DISTRIBUTIONS OF THE TWO JUPITER TROJAN COLOR POPULATIONS , 2014, 1408.2485.

[14]  E. Lellouch,et al.  THE ALBEDO–COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS , 2014, 1406.1420.

[15]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[16]  Michael E. Brown,et al.  THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25 AND THE FORMATION OF THE DWARF PLANETS , 2013, 1311.0553.

[17]  D. Vokrouhlický,et al.  CAPTURE OF TROJANS BY JUMPING JUPITER , 2013, 1303.2900.

[18]  Amy K. Mainzer,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY , 2012, 1209.1549.

[19]  N. Peixinho,et al.  The bimodal colors of Centaurs and small Kuiper belt objects , 2012, 1206.3153.

[20]  András Pál,et al.  fitsh– a software package for image processing , 2011 .

[21]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS , 2011, 1110.0280.

[22]  Harold F. Levison,et al.  LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK , 2011 .

[23]  M. A’Hearn Comets as Building Blocks , 2011 .

[24]  A. Erikson,et al.  ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS , 2011 .

[25]  A. Harris,et al.  Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations , 2009, 0908.4198.

[26]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[27]  R. Gil-Hutton,et al.  Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.

[28]  Z. Ivezic,et al.  The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3 , 2007, astro-ph/0703026.

[29]  D. Jewitt,et al.  Fraction of Contact Binary Trojan Asteroids , 2006, 0706.0233.

[30]  Michel Breger,et al.  Period04 User Guide , 2005 .

[31]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[32]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[33]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[34]  P. Lacerda The Shapes and Spins of Kuiper Belt Objects , 2005 .

[35]  Daniel D. Durda,et al.  Asteroids Do Have Satellites , 2002 .

[36]  F. Marzari,et al.  Updated collisional probabilities of minor body populations , 2001 .

[37]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[38]  Richard P. Binzel,et al.  Trojan, Hilda, and Cybele asteroids: New lightcurve observations and analysis , 1992 .