Irreversible Capacity Loss of Li-Ion Batteries Cycled at Low Temperature Due to an Untypical Layer Hindering Li Diffusion into Graphite Electrode

[1]  Hsiu-Ping Lin,et al.  Low-Temperature Behavior of Li-Ion Cells , 2001 .

[2]  M. Wohlfahrt‐Mehrens,et al.  Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells , 2017 .

[3]  Euan McTurk,et al.  Minimally Invasive Insertion of Reference Electrodes into Commercial Lithium-Ion Pouch Cells , 2015 .

[4]  B. Ratnakumar,et al.  Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates , 1999 .

[5]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[6]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[7]  Dirk Uwe Sauer,et al.  Cycle and calendar life study of a graphite|LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A: Full cell characterization , 2013 .

[8]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[9]  Bing Sun,et al.  Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study , 2014 .

[10]  Qian Xu,et al.  Corrosion behavior of a positive graphite electrode in vanadium redox flow battery , 2011 .

[11]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[13]  Emilie Bekaert,et al.  Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques , 2016 .

[14]  Marshall C. Smart,et al.  Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells , 2011 .

[15]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[16]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[17]  Chaoyang Wang,et al.  Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging , 2017 .

[18]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[19]  Tsutomu Ohzuku,et al.  Solid-State Chemistry and Electrochemistry of LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2 for Advanced Lithium-Ion Batteries III. Rechargeable Capacity and Cycleability , 2007 .

[20]  H. Honbo,et al.  Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding , 2009 .

[21]  Marius Bauer,et al.  Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells , 2016 .

[22]  Vincent Chevrier,et al.  In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry , 2013 .

[23]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[24]  Emilie Bekaert,et al.  Effects of Biphenyl Polymerization on Lithium Deposition in Commercial Graphite/NMC Lithium-Ion Pouch-Cells during Calendar Aging at High Temperature , 2017 .

[25]  Yong Yang,et al.  A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells , 2008 .

[26]  Jiang Fan,et al.  Studies on Charging Lithium-Ion Cells at Low Temperatures , 2006 .

[27]  M. Wohlfahrt‐Mehrens,et al.  Detection of Li Deposition by Glow Discharge Optical Emission Spectroscopy in Post-Mortem Analysis , 2015 .

[28]  Doron Aurbach,et al.  Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[29]  Thomas Waldmann,et al.  Optimization of Charging Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments , 2015 .

[30]  Wei Zhang,et al.  Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction , 2012, Scientific Reports.

[31]  A. Bordes,et al.  Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by Time-of-Flight Secondary Ion Mass Spectrometer Imaging Performed on an In Situ Focused Ion Beam Cross Section , 2016 .

[32]  Craig B. Arnold,et al.  The Effects of Defects on Localized Plating in Lithium-Ion Batteries , 2015 .

[33]  Dimethyl carbonate (DMC) electrolytes – the effect of solvent purity on Li–ion intercalation into graphite anodes , 2002 .

[34]  Michael J. Hoffmann,et al.  Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells , 2014 .

[35]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .

[36]  Zhansheng Guo,et al.  Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes , 2015 .

[37]  薮内 直明,et al.  Solid state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2006 .

[38]  Hui Wu,et al.  Improving battery safety by early detection of internal shorting with a bifunctional separator , 2014, Nature Communications.

[39]  M. Winter,et al.  Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells , 2013 .

[40]  De-cheng Li,et al.  Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 , 2004 .

[41]  Martin Winter,et al.  Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis , 2016 .

[42]  Hubert A. Gasteiger,et al.  Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation , 2015 .

[43]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[44]  J. Bernard,et al.  Calendar aging of commercial graphite/LiFePO4 cell - Predicting capacity fade under time dependent storage conditions , 2014 .

[45]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction , 2014 .

[46]  David G. Kwabi,et al.  XPS Investigation of the Electrolyte Induced Stabilization of LiCoO2 and “AlPO4”-Coated LiCoO2 Composite Electrodes , 2016 .

[47]  Michael A. Danzer,et al.  Lithium plating in a commercial lithium-ion battery - A low-temperature aging study , 2015 .

[48]  Petr Novák,et al.  Oxidative Electrolyte Solvent Degradation in Lithium‐Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation , 1999 .

[49]  J. C. Burns,et al.  In-Situ Detection of Lithium Plating Using High Precision Coulometry , 2015 .

[50]  Li Zhang,et al.  Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells , 2015 .

[51]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[52]  Moses Ender,et al.  In situ detection of lithium metal plating on graphite in experimental cells , 2015 .

[53]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. , 2014, Nature communications.

[54]  A. Manthiram,et al.  Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1 ∕ 3Mn1 ∕ 3Co1 ∕ 3O2 Cathodes , 2005 .

[55]  E. Peled,et al.  XPS analysis of the SEI formed on carbonaceous materials , 2004 .

[56]  H. Gasteiger,et al.  Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance , 2015 .

[57]  Corrine F. Elliott,et al.  Overcharge Performance of 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine at High Concentration in Lithium-Ion Batteries , 2016 .

[58]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[59]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[60]  Y. Orikasa,et al.  Effect of an Electrolyte Additive of Vinylene Carbonate on the Electronic Structure at the Surface of a Lithium Cobalt Oxide Electrode under Battery Operating Conditions , 2015 .

[61]  L. Nazar,et al.  X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1) , 2006 .

[62]  Thomas Waldmann,et al.  Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measurements with Reconstructed 3-Electrode Pouch Full Cells , 2016 .

[63]  S. Ball “Electrolytes for Lithium and Lithium-Ion Batteries” , 2015 .

[64]  J. Sakamoto,et al.  The Limits of Low‐Temperature Performance of Li‐Ion Cells , 2000 .

[65]  S. Boxer,et al.  Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution. , 2005, Biophysical journal.

[66]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[67]  Philippe Moreau,et al.  NMR quantitative analysis of solid electrolyte interphase on aged Li-ion battery electrodes , 2015 .

[68]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[69]  Michael A. Danzer,et al.  Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries , 2014 .