Patchwork B-spline refinement
暂无分享,去创建一个
[1] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[2] Hendrik Speleers,et al. Adaptive isogeometric analysis with hierarchical box splines , 2017, 1805.01624.
[3] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[4] Debasis Mukherjee,et al. Permanence and global attractivity for facultative mutualism system with delay , 2003 .
[5] Bert Jüttler,et al. Adaptive CAD model (re-)construction with THB-splines , 2014, Graph. Model..
[6] Bert Jüttler,et al. Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..
[7] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[8] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[9] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[10] Jiansong Deng,et al. Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..
[11] Jiansong Deng,et al. A new basis for PHT-splines , 2015, Graph. Model..
[12] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[13] Stefanie Hahmann,et al. Hierarchical triangular splines , 2005, TOGS.
[14] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[15] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[16] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[17] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[18] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[19] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[20] Bert Jüttler,et al. On the linear independence of truncated hierarchical generating systems , 2016, J. Comput. Appl. Math..
[21] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[22] Bert Jüttler,et al. Partially Nested Hierarchical Refinement of Bivariate Tensor-Product Splines with Highest Order Smoothness , 2016, MMCS.
[23] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[24] Bert Jüttler,et al. THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .
[25] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[26] Josef Hoschek,et al. Handbook of Computer Aided Geometric Design , 2002 .
[27] Thomas J. R. Hughes,et al. Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .
[28] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[29] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[30] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[31] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[32] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..