Patchwork B-spline refinement

Abstract Hierarchical splines allow to use representations with varying level of detail in different parts of a geometric model. However, the progression from coarse to fine scale is based on a single sequence of nested spline spaces. More precisely, each space defining a representation of some level must simultaneously be a subspace of all the higher level spaces and contain all the lower level ones. This requirement imposes severe restrictions on the available refinement strategies. We introduce the new framework of Patchwork B-splines (PB-splines), which alleviates these constraints and therefore increases the flexibility of the representations that are available in different parts of a geometric model. We derive the mathematical foundations of multivariate PB-splines, in particular focusing on the construction of a basis that forms a convex partition of unity. This generalizes the concept of truncated hierarchical (TH) B-splines to the novel framework. Moreover, we discuss the application of PB-splines to surface reconstruction with adaptive refinement. It is observed that the increased flexibility of the local representations provides significant advantages.

[1]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[2]  Hendrik Speleers,et al.  Adaptive isogeometric analysis with hierarchical box splines , 2017, 1805.01624.

[3]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[4]  Debasis Mukherjee,et al.  Permanence and global attractivity for facultative mutualism system with delay , 2003 .

[5]  Bert Jüttler,et al.  Adaptive CAD model (re-)construction with THB-splines , 2014, Graph. Model..

[6]  Bert Jüttler,et al.  Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..

[7]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[8]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[9]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[10]  Jiansong Deng,et al.  Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..

[11]  Jiansong Deng,et al.  A new basis for PHT-splines , 2015, Graph. Model..

[12]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[13]  Stefanie Hahmann,et al.  Hierarchical triangular splines , 2005, TOGS.

[14]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[15]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[16]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[17]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[18]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[19]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[20]  Bert Jüttler,et al.  On the linear independence of truncated hierarchical generating systems , 2016, J. Comput. Appl. Math..

[21]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[22]  Bert Jüttler,et al.  Partially Nested Hierarchical Refinement of Bivariate Tensor-Product Splines with Highest Order Smoothness , 2016, MMCS.

[23]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[24]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[25]  Bert Jüttler,et al.  On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..

[26]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[27]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[28]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[29]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[30]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[31]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[32]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..