Global synchronization of complex networks perturbed by the Poisson noise

In this paper, the problem of stochastic synchronization analysis is investigated for complex networks perturbed by the Poisson noise. By using the key tool such as the infinitesimal operator for stochastic differential equations driven by the Poisson process, this paper proposes a globally exponentially synchronization criterion in mean square for complex networks perturbed by the Poisson noise. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed approach.

[1]  Jinde Cao,et al.  Stochastic Synchronization of Complex Networks With Nonidentical Nodes Via Hybrid Adaptive and Impulsive Control , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Zidong Wang,et al.  Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays , 2010, IEEE Transactions on Neural Networks.

[3]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  C. Wu Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling , 2003 .

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  Qiankun Song,et al.  Synchronization analysis in an array of asymmetric neural networks with time-varying delays and nonlinear coupling , 2010, Appl. Math. Comput..

[8]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[9]  H. Kushner Stochastic Stability and Control , 2012 .

[10]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[11]  Ho-Youl Jung,et al.  LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks , 2009 .

[12]  Shengyuan Xu,et al.  Robust global synchronization of complex networks with neutral-type delayed nodes , 2010, Appl. Math. Comput..

[13]  Jinping Mou,et al.  Synchronization control for the competitive complex networks with time delay and stochastic effects , 2012 .

[14]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[15]  Ju H. Park,et al.  Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control , 2012, Appl. Math. Comput..

[16]  Jinde Cao,et al.  Local Synchronization of a Complex Network Model , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  M. García,et al.  An elementary theory of stochastic differential equations driven by a poisson process , 1994 .

[18]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[19]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[20]  Ilya V. Kolmanovsky,et al.  Optimal containment control for a class of stochastic systems perturbed by poisson and wiener processes , 2002, IEEE Trans. Autom. Control..

[21]  Chai Wah Wu Synchronization in arrays of coupled nonlinear systems: passivity circle criterion and observer design , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[22]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[23]  C. Wu Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and observer design , 2001 .

[24]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.