Universal Behaviour of Extreme Value Statistics for Selected Observables of Dynamical Systems
暂无分享,去创建一个
Valerio Lucarini | Davide Faranda | D. Faranda | V. Lucarini | J. Wouters | Jeroen Wouters | Davide Faranda
[1] F. Ledrappier,et al. The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .
[2] Didier Sornette,et al. On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns , 2006 .
[3] Ana Cristina Moreira Freitas,et al. Hitting time statistics and extreme value theory , 2008, 0804.2887.
[4] RETURN TIME STATISTICS OF INVARIANT MEASURES FOR INTERVAL MAPS WITH POSITIVE LYAPUNOV EXPONENT , 2007, 0708.0379.
[5] Pierre Collet,et al. Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.
[6] D. Sornette,et al. Characterization of the Frequency of Extreme Earthquake Events by the Generalized Pareto Distribution , 2000, cond-mat/0011168.
[7] Jorge Milhazes Freitas,et al. On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .
[8] J. Hüsler. Extremes and related properties of random sequences and processes , 1984 .
[9] Andrew J. Majda,et al. Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems , 2007 .
[10] Y. Lacroix. Possible limit laws for entrance times of an ergodic aperiodic dynamical system , 2002 .
[11] R. Boyd,et al. Applied Financial Economics , 1996 , 6 , 279 — 286 Forecasting UK stock prices , 1996 .
[12] Vladimir Kossobokov,et al. Extreme events: dynamics, statistics and prediction , 2011 .
[13] Ana Cristina Moreira Freitas,et al. Extreme Value Laws in Dynamical Systems for Non-smooth Observations , 2010, 1006.3276.
[14] Angel R. Martinez,et al. Computational Statistics Handbook with MATLAB , 2001 .
[15] Valerio Lucarini,et al. A statistical mechanical approach for the computation of the climatic response to general forcings , 2010, 1008.0340.
[16] F. Zwiers,et al. Intercomparison of Near-Surface Temperature and Precipitation Extremes in AMIP-2 Simulations, Reanalyses, and Observations , 2005 .
[17] P. Ruti,et al. Accessing extremes of mid-latitudinal wave activity: methodology and application , 2009 .
[18] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[19] Niels Henrik David Bohr,et al. Proceedings of the Cambridge Philosophical Society , 1843 .
[20] Valerio Lucarini,et al. Extreme Value Statistics of the Total Energy in an Intermediate Complexity Model of the Mid-latitude Atmospheric Jet. Part I: Stationary case , 2006 .
[21] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[22] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[23] Giorgio Turchetti,et al. Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution , 2011, 1103.0889.
[24] C. Ferro,et al. Robust extremes in chaotic deterministic systems. , 2009, Chaos.
[25] Marc B. Parlange,et al. STATISTICS OF EXTREMES: MODELING ECOLOGICAL DISTURBANCES , 2005 .
[26] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[27] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[28] A. Hadi,et al. Fitting the Generalized Pareto Distribution to Data , 1997 .
[29] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[30] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[31] E. Simiu,et al. Extreme Wind Distribution Tails: A “Peaks over Threshold” Approach , 1996 .
[32] David Ruelle,et al. General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium☆ , 1998 .
[33] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[34] R. Fildes. Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .
[35] Janet E. Heffernan,et al. Dependence Measures for Extreme Value Analyses , 1999 .
[36] F. Ledrappier,et al. The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula , 1985 .
[37] Josselin Garnier. Probability Theory and Related Fields. Manuscript-nr. Stochastic Invariant Imbedding Application to Stochastic Diierential Equations with Boundary Conditions , 2007 .
[38] Dima Shepelyansky,et al. Chirikov standard map , 2008, Scholarpedia.
[39] D. Ruelle. A review of linear response theory for general differentiable dynamical systems , 2009, 0901.0484.
[40] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[41] S. Vannitsem,et al. Statistical properties of the temperature maxima in an intermediate order Quasi-Geostrophic model , 2007 .
[42] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[43] B. Cheng,et al. A newly-discovered GPD-GEV relationship together with comparing their models of extreme precipitation in summer , 2008 .
[44] E. Ott. Chaos in Dynamical Systems: Contents , 2002 .
[45] Alef E. Sterk,et al. Extreme value laws in dynamical systems under physical observables , 2011, 1107.5673.