Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies

High spatial resolution of precipitation (P) and average air temperature (Tavg) datasets are ideal for determining the spatial patterns associated with large-scale atmospheric and oceanic indexes, and climate change and variability studies, however such datasets are not usually available. Those datasets are particularly important for Central America because they allow the conception of climate variability and climate change studies in a region of high climatic heterogeneity and at the same time aid the decisionmaking process at the local scale (municipalities and districts). Tavg data from stations and complementary gridded datasets at 50 km resolution were used to generate a high-resolution (5 km grid) dataset for Central America from 1970 to 1999. A highresolution P dataset was used along with the new Tavg dataset to study climate variability and a climate change application. Consistently with other studies, it was found that the 1970-1999 trends in P are generally non-significant, with the exception of a few small locations. In the case of Tavg, there were significant warming trends in most of Central America, and cooling trends in Honduras and northern Panama. When the sea surface temperature anomalies between the Tropical Pacific and the Tropical Atlantic have different (same) sign, they are a good indicator of the sign of P (Tavg) annual anomalies. Even with non-significant trends in precipitation, the significant warming trends in Tavg in most of Central America can have severe consequences in the hydrology and water availability of the region, as the warming would bring increases in evapotranspiration, drier soils and higher aridity.

[1]  Leo R Beard,et al.  Statistical Methods in Hydrology , 1962 .

[2]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[3]  P. Waylen,et al.  Interannual variability of monthly precipitation in Costa Rica , 1996 .

[4]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[5]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[6]  Alberto M. Mestas-Nuñez,et al.  How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures , 1999 .

[7]  D. Enfield,et al.  The Dependence of Caribbean Rainfall on the Interaction of the Tropical Atlantic and Pacific Oceans , 1999 .

[8]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[9]  Alberto M. Mestas-Nuñez,et al.  The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. , 2001 .

[10]  E. Alfaro Response of Air Surface Temperatures over Central America to Oceanic Climate Variability Indices , 2002 .

[11]  J. Janowiak,et al.  Global Land Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations , 2002 .

[12]  C. Daly,et al.  A knowledge-based approach to the statistical mapping of climate , 2002 .

[13]  P. Jones,et al.  Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001. , 2003 .

[14]  D. Lettenmaier,et al.  Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs , 2004 .

[15]  Thomas C. Peterson,et al.  Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003 , 2005 .

[16]  V. Magaña,et al.  Atmospheric forcing of the eastern tropical Pacific: A review , 2006 .

[17]  J. V. Revadekar,et al.  Global observed changes in daily climate extremes of temperature and precipitation , 2006 .

[18]  E. Alfaro Uso del análisis de correlación canónica para la predicción de la precipitación pluvial en Centroamérica , 2007 .

[19]  E. Maurer,et al.  Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods , 2007 .

[20]  Govindasamy Bala,et al.  Detection and attribution of temperature changes in the mountainous Western United States , 2007 .

[21]  G. Meehl,et al.  Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States , 2007 .

[22]  Peter C. Thomson,et al.  Caracterización del comportamiento dinámico de la tribuna occidental del estadio Pascual Guerrero durante un concierto musical , 2007 .

[23]  J. Amador The Intra‐Americas Sea Low‐level Jet , 2008, Annals of the New York Academy of Sciences.

[24]  B. Santer,et al.  Human-Induced Changes in the Hydrology of the Western United States , 2008, Science.

[25]  H. V. D. Dool,et al.  A global monthly land surface air temperature analysis for 1948-present , 2008 .

[26]  A. Wood,et al.  Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America , 2008 .

[27]  C. Daly,et al.  Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States , 2008 .

[28]  B. Santer,et al.  Attribution of declining Western U.S. Snowpack to human effects , 2008 .

[29]  Arthur A. Mirin,et al.  Detection and Attribution of Streamflow Timing Changes to Climate Change in the Western United States , 2009 .

[30]  Erick J. Alfaro,et al.  Descripción de dos métodos de rellenado de datos ausentes en series de tiempo meteorológicas , 2009 .

[31]  M. Dettinger,et al.  The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California , 2010 .

[32]  D. Enfield,et al.  The Role of Regional SST Warming Variations in the Drying of Meso-America in Future Climate Projections* , 2010 .

[33]  V. Simoncini,et al.  A Guide to Empirical Orthogonal Functions for Climate Data Analysis , 2010 .

[34]  Predicción estacional para ASO de eventos extremos y días con precipitación sobre las vertientes Pacífico y Caribe de América Central, utilizando análisis de correlación canónica , 2011 .

[35]  P. Ciais,et al.  Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios , 2012 .

[36]  E. Alfaro,et al.  Some physical and socio-economic aspects of climate change in Central America , 2012 .

[37]  E. Alfaro,et al.  Hydrological climate change projections for Central America , 2013 .

[38]  Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models , 2013 .

[39]  E. Alfaro,et al.  Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis , 2013 .

[40]  Eric J. Alfaro Martínez,et al.  Predicción estacional de las temperaturas máximas y mínimas en América Central , 2014 .

[41]  H. León,et al.  The Caribbean Low‐Level Jet, the Inter‐Tropical Convergence Zone and Precipitation Patterns in the Intra‐Americas Sea: A Proposed Dynamical Mechanism , 2015 .

[42]  Caracterización del “veranillo” en dos cuencas de la vertiente del Pacífico de Costa Rica, América Central , 2015 .

[43]  E. Alfaro,et al.  Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America , 2015 .

[44]  J. Hansen,et al.  Investigating El Niño‐Southern Oscillation and society relationships , 2015 .

[45]  J. Amador,et al.  The easternmost tropical Pacific. Part I: A climate review , 2016 .