Shallow Water Waves

In this contribution we describe the role of several two-component integrable systems in the classical problem of shallow water waves. The starting point in our derivation is the Euler equation for an incompressible fluid, the equation of mass conservation, the simplest bottom and surface conditions and the constant vorticity condition. The approximate model equations are generated by introduction of suitable scalings and by truncating asymptotic expansions of the quantities to appropriate order. The so obtained equations can be related to three different integrable systems: a two component generalization of the Camassa-Holm equation, the Zakharov-Ito system and the Kaup-Boussinesq system. The significance of the results is the inclusion of vorticity, an important feature of water waves that has been given increasing attention during the last decade. The presented investigation shows how -- up to a certain order -- the model equations relate to the shear flow upon which the wave resides. In particular, it shows exactly how the constant vorticity affects the equations.

[1]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[2]  Darryl D. Holm,et al.  Singular solutions of a modified two-component Camassa-Holm equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  A. Constantin,et al.  Symmetry of steady periodic gravity water waves with vorticity , 2007 .

[4]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[5]  M. Boiti,et al.  On a new hierarchy of Hamiltonian soliton equations , 1983 .

[6]  R. Ivanov Extended Camassa-Holm Hierarchy and Conserved Quantities , 2006, nlin/0601066.

[7]  Joachim Escher,et al.  Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation , 2007 .

[8]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[9]  Darryl D. Holm,et al.  Geodesic Vlasov equations and their integrable moment closures , 2009, Journal of Geometric Mechanics.

[10]  H. McKean Breakdown of the Camassa‐Holm equation , 2004 .

[11]  N. Bogolyubov,et al.  Complete integrability of the nonlinear ito and Benney-Kaup systems: Gradient algorithm and lax representation , 1986 .

[12]  W. Strauss,et al.  Stability of peakons , 2000 .

[13]  A. Constantin,et al.  Nearly-Hamiltonian Structure for Water Waves with Constant Vorticity , 2006, math-ph/0610014.

[14]  Joachim Escher,et al.  Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation , 2007 .

[15]  P. Olver,et al.  Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Darryl D. Holm,et al.  Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .

[17]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[18]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[19]  Gennady El,et al.  Integrable Shallow‐Water Equations and Undular Bores , 2001 .

[20]  R. Johnson,et al.  On the Non-Dimensionalisation, Scaling and Resulting Interpretation of the Classical Governing Equations for Water Waves , 2008 .

[21]  T. Wolf,et al.  Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I , 2004, nlin/0412003.

[22]  G. Wilson,et al.  SOLITONS (Topics in Current Physics, 17) , 1981 .

[23]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[24]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.

[25]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[26]  J. Hoppe DiffAT2, and the curvature of some infinite dimensional manifolds , 1988 .

[27]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[28]  I. Kunin Inverse Scattering Method , 1982 .

[29]  R. S. Johnson,et al.  The Camassa–Holm equation for water waves moving over a shear flow , 2003 .

[30]  Erik Wahlén,et al.  A Hamiltonian Formulation of Water Waves with Constant Vorticity , 2007 .

[31]  B. Kupershmidt,et al.  A coupled Korteweg-de Vries equation with dispersion , 1985 .

[32]  D. Sattinger,et al.  Variational formulations for steady water waves with vorticity , 2006, Journal of Fluid Mechanics.

[33]  Mats Ehrnström A new formulation of the water wave problem for Stokes waves of constant vorticity , 2008 .

[34]  J. Vanden-Broeck Steep solitary waves in water of finite depth with constant vorticity , 1994, Journal of Fluid Mechanics.

[35]  D. J. Kaup,et al.  A Higher-Order Water-Wave Equation and the Method for Solving It , 1975 .

[36]  R. S. Johnson,et al.  Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis , 2008 .

[37]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[38]  Alain Trouvé,et al.  The Euler-Poincare theory of Metamorphosis , 2008, ArXiv.

[39]  Boris Kolev,et al.  Lie Groups and Mechanics: An Introduction , 2004, math-ph/0402052.

[40]  D. Henry PERSISTENCE PROPERTIES FOR THE DEGASPERIS–PROCESI EQUATION , 2008 .

[41]  V. M. Hur Exact Solitary Water Waves with Vorticity , 2008 .

[42]  D. Peregrine A Modern Introduction to the Mathematical Theory of Water Waves. By R. S. Johnson. Cambridge University Press, 1997. xiv+445 pp. Hardback ISBN 0 521 59172 4 £55.00; paperback 0 521 59832 X £19.95. , 1998, Journal of Fluid Mechanics.

[43]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[44]  Adrian Constantin,et al.  Integrability of Invariant Metrics on the Diffeomorphism Group of the Circle , 2006, J. Nonlinear Sci..

[45]  J. C. Burns Long waves in running water , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[47]  Adrian Constantin,et al.  On the Blow-Up of Solutions of a Periodic Shallow Water Equation , 2000, J. Nonlinear Sci..

[48]  A. Constantin A Hamiltonian Formulation for Free Surface Water Waves with Non-Vanishing Vorticity , 2005 .

[49]  Mark D. Groves,et al.  Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity , 2007 .

[50]  R. Ivanov,et al.  Water waves and integrability , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Darryl D. Holm,et al.  Vlasov moments, integrable systems and singular solutions , 2007, 0705.3603.

[52]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[53]  R. Johnson,et al.  The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations , 2003 .

[54]  Masaaki Ito,et al.  Symmetries and conservation laws of a coupled nonlinear wave equation , 1982 .