Using weighted pseudo‐inverse method for reconstruction of reflectance spectra and analyzing the dataset in terms of normality
暂无分享,去创建一个
Seyed Hossein Amirshahi | Vahid Babaei | Farnaz Agahian | S. H. Amirshahi | Farnaz Agahian | Vahid Babaei
[1] J. Doornik,et al. An Omnibus Test for Univariate and Multivariate Normality , 2008 .
[2] Hui-Liang Shen,et al. Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. , 2007, Optics express.
[3] S. H. Amirshahi,et al. Recovery of spectral data using weighted canonical correlation regression , 2009 .
[4] A. I. Negueruela,et al. Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.
[5] P. Kubelka. Ein Beitrag zur Optik der Farban striche , 1931 .
[6] Javier Hernández-Andrés,et al. LINEAR BASES FOR SPECTRAL REFLECTANCE FUNCTIONS OF ACRYLIC PAINTS , 1998 .
[7] B A Wandell,et al. Linear models of surface and illuminant spectra. , 1992, Journal of the Optical Society of America. A, Optics and image science.
[8] Daniel Nyström. Colorimetric and Multispectral Image Acquisition Using Model-Based and Empirical Device Characterization , 2007, SCIA.
[9] Changjun Li,et al. Characterization of trichromatic color cameras by using a new multispectral imaging technique. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[10] Stephen Westland,et al. Recovering spectral information using digital camera systems , 2001 .
[11] Hui-Liang Shen,et al. Spectral characterization of a color scanner based on optimized adaptive estimation. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.
[12] Francis J. M. Schmitt,et al. A fully automatic method for the reconstruction of spectral reflectance curves by using mixture density networks , 2003, Pattern Recognit. Lett..
[13] Kinjiro Amano,et al. Recovering spectral data from natural scenes with an RGB digital camera and colored filters , 2007 .
[14] S. H. Amirshahi,et al. Reconstruction of reflectance data using an interpolation technique. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.
[15] Seyed Hossein Amirshahi,et al. Recovery of reflectance spectra from CIE tristimulus values using a progressive database selection technique , 2006 .
[16] Seyed Hossein Amirshahi,et al. A New matching strategy: Trial of the principal component coordinates , 2008 .
[17] Javier Hernández-Andrés,et al. Multispectral synthesis of daylight using a commercial digital CCD camera. , 2005, Applied optics.
[18] F. Schmitt,et al. Linear inverse problems in imaging , 2008, IEEE Signal Processing Magazine.
[19] R. Penrose. A Generalized inverse for matrices , 1955 .
[20] R. Berns,et al. A Comparative Analysis of Spectral Reflectance Estimated in Various Spaces Using a Trichromatic Camera System , 2000, Journal of Imaging Science and Technology.
[21] Norimichi Tsumura,et al. Limitation of Color Samples for Spectral Estimation from Sensor Responses in Fine Art Painting , 1999 .
[22] Hui-Liang Shen,et al. Spectral characterization of a color scanner by adaptive estimation. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.
[23] S. H. Amirshahi,et al. Reconstruction of reflectance spectra using weighted principal component analysis , 2008 .
[24] D. Dupont. Study of the reconstruction of reflectance curves based on tristimulus values: Comparison of methods of optimization , 2002 .
[25] R. Berns,et al. Image-based spectral reflectance reconstruction using the matrix R method , 2007 .
[26] Brian A Wandell,et al. Spectral estimation theory: beyond linear but before Bayesian. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[27] M. Brill,et al. The Principal Components of Reflectances , 2004 .