Vers différents types de règles pour les données d'expression de gènes - application à des données de tumeurs mammaires
暂无分享,去创建一个
Jean-Marc Petit | Marie Pailloux | Valérie Chabaud | Yves Jean Bignon | Véronique Vidal | J. Petit | M. Pailloux | Y. Bignon | V. Vidal | Valérie Chabaud
[1] Heikki Mannila,et al. Design of Relational Databases , 1992 .
[2] Yudong D. He,et al. Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.
[3] Heikki Mannila,et al. Approximate Inference of Functional Dependencies from Relations , 1995, Theor. Comput. Sci..
[4] Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource , 2003 .
[5] Werner Dubitzky,et al. A Practical Approach to Microarray Data Analysis , 2003, Springer US.
[6] Huiqing Liu,et al. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients , 2003, Bioinform..
[7] Régis Gras,et al. Mesurer la qualité des règles et de leurs contraposées avec le taux informationnel TIC , 2004, EGC.
[8] Gregory Piatetsky-Shapiro,et al. Microarray data mining: facing the challenges , 2003, SKDD.
[9] A I Saeed,et al. TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.
[10] S. Ramaswamy,et al. Microarrays for an integrative genomics , 2004 .
[11] Régis Gras,et al. Une version entropique de l'intensité d'implication pour les corpus volumineux , 2001, EGC.
[12] Jean-Marc Petit,et al. Functional and approximate dependencies mining: databases and FCA point of view , 2002 .
[13] I. Bièche,et al. CCND1 mRNA Overexpression is Highly Related to Estrogen Receptor Positivity but not to Proliferative Markers in Primary Breast Cancer , 2000, The International journal of biological markers.
[14] Rosine Cicchetti,et al. FUN: An Efficient Algorithm for Mining Functional and Embedded Dependencies , 2001, ICDT.
[15] Jean-Marc Petit,et al. e-functional dependency inference: application to DNA microarray expression data , 2001, BDA.
[16] Bernard Monjardet,et al. The Lattices of Closure Systems, Closure Operators, and Implicational Systems on a Finite Set: A Survey , 2003, Discret. Appl. Math..
[17] Didier Dubois,et al. Fuzzy functional dependencies-an overview and a critical discussion , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.
[18] Peter A. Flach,et al. Database Dependency Discovery: A Machine Learning Approach , 1999, AI Commun..
[19] Hannu Toivonen,et al. Efficient discovery of functional and approximate dependencies using partitions , 1998, Proceedings 14th International Conference on Data Engineering.
[20] L. Beran,et al. [Formal concept analysis]. , 1996, Casopis lekaru ceskych.
[21] Georg Gottlob,et al. Investigations on Armstrong relations, dependency inference, and excluded functional dependencies , 1990, Acta Cybern..
[22] K. Cowan,et al. Posttranscriptional regulation of the c-myb proto-oncogene in estrogen receptor-positive breast cancer cells. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.
[23] Carolina Ruiz,et al. Distance-enhanced association rules for gene expression , 2003, BIOKDD.
[24] Petra Perner,et al. Data Mining - Concepts and Techniques , 2002, Künstliche Intell..
[25] Nicolas Spyratos,et al. Règles d'association significatives , 2002, BDA.
[26] C. Becquet,et al. Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data , 2002, Genome Biology.
[27] N Andrieu,et al. Strong association between c-myb and oestrogen-receptor expression in human breast cancer. , 1990, Oncogene.
[28] János Demetrovics,et al. Some Remarks On Generating Armstrong And Inferring Functional Dependencies Relation , 1995, Acta Cybern..
[29] Edward L. Robertson,et al. FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies from Relation Instances - Extended Abstract , 2001, DaWaK.