Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases
暂无分享,去创建一个
[1] Nilima Nigam,et al. High-order conforming finite elements on pyramids , 2012 .
[2] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[3] George Em Karniadakis,et al. A discontinuous Galerkin spectral/ hp grids , 2000 .
[4] N. Nigam,et al. Higher-order finite elements on pyramids , 2006 .
[5] W. A. Mulder,et al. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .
[6] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[7] Nilima Nigam,et al. Numerical integration for high order pyramidal finite elements , 2010, 1003.0495.
[8] Marc Duruflé,et al. Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..
[9] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[10] J. Hesthaven,et al. High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] L. J. Comrie,et al. Mathematical Tables and Other Aids to Computation. , 1946 .
[12] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[13] M. Carpenter,et al. Fourth-order 2N-storage Runge-Kutta schemes , 1994 .
[14] T. Warburton,et al. A low storage curvilinear discontinuous Galerkin time-domain method for electromagnetics , 2010, 2010 URSI International Symposium on Electromagnetic Theory.
[15] Patrick Joly,et al. Influence of Gauss and Gauss‐Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain , 2009 .
[16] Claus-Dieter Munz,et al. Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..
[17] Sébastien Pernet. Etude de méthodes d'ordre élevé pour résoudre les équations de Maxwell dans le domaine temporel : Application à la détection et à la compatibilité électromagnétique , 2004 .
[18] D. P. Flemming. Numerical Integration over Simplexes and Cones , 2010 .
[19] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[20] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[21] George Em Karniadakis,et al. Spectral / hp Methods For Elliptic Problems on Hybrid Grids , 1998 .
[22] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[23] Marc Duruflé,et al. Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .
[24] Gary Cohen,et al. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..
[25] G. Bedrosian. Shape functions and integration formulas for three‐dimensional finite element analysis , 1992 .
[26] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[27] P. Lax. Hyperbolic systems of conservation laws , 2006 .