Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases

We study arbitrarily high-order finite elements defined on pyramids on discontinuous Galerkin methods. We propose a new family of high-order pyramidal finite element using orthogonal basis functions which can be used in hybrid meshes including hexahedra, tetrahedra, wedges and pyramids. We perform a comparison between these orthogonal functions and nodal functions for affine and non-affine elements. Different strategies for the inversion of mass matrix are also considered and discussed. Numerical experiments are conducted for 3-D Maxwell's equations.

[1]  Nilima Nigam,et al.  High-order conforming finite elements on pyramids , 2012 .

[2]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[3]  George Em Karniadakis,et al.  A discontinuous Galerkin spectral/ hp grids , 2000 .

[4]  N. Nigam,et al.  Higher-order finite elements on pyramids , 2006 .

[5]  W. A. Mulder,et al.  Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .

[6]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[7]  Nilima Nigam,et al.  Numerical integration for high order pyramidal finite elements , 2010, 1003.0495.

[8]  Marc Duruflé,et al.  Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..

[9]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[10]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[12]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[13]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[14]  T. Warburton,et al.  A low storage curvilinear discontinuous Galerkin time-domain method for electromagnetics , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[15]  Patrick Joly,et al.  Influence of Gauss and Gauss‐Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain , 2009 .

[16]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[17]  Sébastien Pernet Etude de méthodes d'ordre élevé pour résoudre les équations de Maxwell dans le domaine temporel : Application à la détection et à la compatibilité électromagnétique , 2004 .

[18]  D. P. Flemming Numerical Integration over Simplexes and Cones , 2010 .

[19]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  George Em Karniadakis,et al.  Spectral / hp Methods For Elliptic Problems on Hybrid Grids , 1998 .

[22]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[23]  Marc Duruflé,et al.  Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .

[24]  Gary Cohen,et al.  A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..

[25]  G. Bedrosian Shape functions and integration formulas for three‐dimensional finite element analysis , 1992 .

[26]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[27]  P. Lax Hyperbolic systems of conservation laws , 2006 .