Finite element formulation for modelling large deformations in elasto‐viscoplastic polycrystals

Anisotropic, elasto-viscoplastic behaviour in polycrystalline materials is modelled using a new, updated Lagrangian formulation based on a three-field form of the Hu-Washizu variational principle to create a stable finiteelement method in the context of nearly incompressible behaviour. The meso-scale is characterized by a representative volume element, which contains grains governed by single crystal behaviour. A new, fully implicit, two-level, backward Euler integration scheme together with an efficient finite element formulation, including consistent linearization, is presented. The proposed finite element model is capable of predicting non-homogeneous meso-fields, which, for example, may impact subsequent recrystallization. Finally, simple deformations involving an aluminium alloy are considered in order to demonstrate the algorithm.

[1]  P. Dawson,et al.  Mesoscale Modeling of Microstructure and Texture Evolution During Deformation Processing of Metals , 2002 .

[2]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[3]  Christian Miehe,et al.  Exponential Map Algorithm for Stress Updates in Anisotropic Multiplicative Elastoplasticity for Single Crystals , 1996 .

[4]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[5]  R. Becker,et al.  Effects of grain interactions on deformation and local texture in polycrystals , 1995 .

[6]  G. Taylor,et al.  The Plastic Extension and Fracture of Aluminium Crystals , 1925 .

[7]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[8]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[9]  P. Dawson,et al.  A time integration algorithm for elasto‐viscoplastic cubic crystals applied to modelling polycrystalline deformation , 1992 .

[10]  Amit Acharya,et al.  Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals , 2000 .

[11]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .

[12]  M. Ortiz,et al.  Formulation of implicit finite element methods for multiplicative finite deformation plasticity , 1990 .

[13]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[14]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[15]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[16]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[17]  L. Anand,et al.  Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[18]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[19]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[20]  John R. Rice,et al.  On numerically accurate finite element , 1974 .

[21]  U. F. Kocks,et al.  Development of localized orientation gradients in fcc polycrystals , 1996 .

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[24]  M. Shephard,et al.  A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation , 1999 .

[25]  Noel P. O’Dowd,et al.  Gradient-dependent deformation of two-phase single crystals , 2000 .

[26]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[27]  Matthew P. Miller,et al.  Influence of slip system hardening assumptions on modeling stress dependence of work hardening , 1997 .

[28]  Paul R. Dawson,et al.  On modeling the development of crystallographic texture in bulk forming processes , 1989 .

[29]  S. V. Harren,et al.  Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model , 1989 .

[30]  E. B. Marin,et al.  Elastoplastic finite element analyses of metal deformations using polycrystal constitutive models , 1998 .