Modeling of a greenhouse using Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is applied in this work to identify some parameters of a greenhouse model whose values are difficult to obtain. The model is described as functions of the outside climate and actuators actions without control. The parameters of the model are obtained applying PSO to minimize a proposed error function. The obtained model is validated using real data from a greenhouse prototype. Validation shows a good agreement with the dynamic behavior of the inside air temperature and relative humidity, which are the main variables of interest.

[1]  Paul S. Addison,et al.  The Illustrated Wavelet Transform Handbook , 2002 .

[2]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[3]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[4]  Xavier Blasco,et al.  Model-based predictive control of greenhouse climate for reducing energy and water consumption , 2007 .

[5]  Yanjing Wang,et al.  Feature extraction and classifier evaluation of EEG for imaginary hand movements , 2010, 2010 Sixth International Conference on Natural Computation.

[6]  F. Orlando,et al.  Identifying a greenhouse climate model by using subspace methods , 2010 .

[7]  A. Rojano,et al.  A Neural Network Model to Control Greenhouse Environment , 2007, 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI).

[8]  Kouhyar Tavakolian,et al.  Selecting better EEG channels for classification of mental tasks , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[9]  Bofeng Zhang,et al.  Correlation Between Forehead EEG and Sensorimotor Area EEG in Motor Imagery Task , 2009, 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing.

[10]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[11]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[12]  Frédéric Lafont,et al.  Fuzzy identification of a greenhouse , 2007, Appl. Soft Comput..

[13]  Pavel Sovka,et al.  Optimal parameterization selection for the brain-computer interface , 2005 .

[14]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[15]  N. Castilla,et al.  Greenhouse technology and management , 2013 .

[16]  Mohammad Reza Yousefi,et al.  A hybrid neuro-fuzzy approach for greenhouse climate modeling , 2010, 2010 5th IEEE International Conference Intelligent Systems.

[17]  Pablo E. Jojoa,et al.  Análisis de Señales EMG Superficiales y su Aplicación en Control de Prótesis de Mano , 2007, Rev. Avances en Sistemas Informática.

[18]  Gerrit van Straten,et al.  Optimal Control of Greenhouse Cultivation , 2010 .

[19]  José Boaventura Cunha,et al.  GREENHOUSE CLIMATE MODELS: AN OVERVIEW , 2003 .

[20]  Javier Leal Iga Modeling of the Climate for a Greenhouse in the North-East of México , 2008 .

[21]  Belkacem Draoui,et al.  Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms , 2011 .

[22]  Hui Zhang,et al.  Wavelet packet transform for feature extraction of EEG during mental tasks , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[23]  C OoteghemvanR.J. Optimal control design for a solar greenhouse , 2007 .

[24]  Chunming Yang,et al.  A new particle swarm optimization technique , 2005, 18th International Conference on Systems Engineering (ICSEng'05).

[25]  Charles W. Anderson,et al.  Discriminating mental tasks using EEG represented by AR models , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[26]  Charles W. Anderson,et al.  Classification of EEG during imagined mental tasks by forecasting with Elman Recurrent Neural Networks , 2011, The 2011 International Joint Conference on Neural Networks.

[27]  Jan Pieters,et al.  Modelling Greenhouse Temperature by means of Auto Regressive Models , 2003 .