Fine-mapping of 150 breast cancer risk regions identifies 178 high confidence target genes

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium, and enriched genomic features to determine variants with high posterior probabilities (HPPs) of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of potentially causal variants, using gene expression (eQTL), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways, were over-represented among the 178 highest confidence target genes.

Jack A. Taylor | W. Chung | S. Cross | P. Fasching | C. Weinberg | N. Camp | C. Vachon | K. Czene | P. Hall | V. Pankratz | A. Howell | F. Couch | A. Schneeweiss | H. Brenner | J. Chang-Claude | K. Kyriacou | M. García-Closas | B. Bonanni | O. Olopade | B. Karlan | A. Wolk | J. Benítez | P. Neven | R. Prentice | G. Giles | J. Hopper | C. Haiman | E. John | A. Spurdle | T. Dörk | W. Foulkes | M. Southey | A. Lophatananon | A. Cox | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | Chen-Yang Shen | D. Lambrechts | J. Peto | E. Khusnutdinova | N. Null | M. Greene | K. Offit | A. Antoniou | A. Brooks-Wilson | J. Spinelli | J. Carroll | Å. Borg | N. Orr | S. Buys | B. Schöttker | H. Brauch | V. Kristensen | P. Hillemanns | J. Long | X. Shu | W. Zheng | H. Anton-Culver | P. Guénel | W. Blot | R. Barkardottir | K. Pooley | A. Dunning | C. Healey | D. Eccles | D. Evans | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | H. Nevanlinna | D. Kang | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | I. Brock | R. Milne | A. González-Neira | U. Hamann | Y. Ko | J. Beesley | A. Mannermaa | V. Kosma | J. Hartikainen | M. Shah | K. Nathanson | N. Miller | M. Kerin | M. Tzardi | C. Clarke | J. Garber | C. Isaacs | A. Lindblom | K. Michailidou | M. Ghoussaini | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | T. Muranen | K. Aittomäki | C. Blomqvist | A. Meindl | R. Schmutzler | E. Makalic | D. Schmidt | H. Flyger | B. Burwinkel | M. Alonso | E. Sawyer | I. Tomlinson | I. Andrulis | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | A. Jager | J. Stone | G. Dite | V. Arndt | A. Swerdlow | M. Goldberg | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | T. Brüning | P. Radice | P. Peterlongo | S. Manoukian | C. Seynaeve | C. Asperen | A. Jakubowska | J. Lubiński | N. Antonenkova | A. Toland | K. Matsuo | A. Wu | S. Teo | M. Hartman | Q. Cai | J. Simard | P. Pharoah | J. Tyrer | M. Eriksson | I. Dos-Santos-Silva | M. Schoemaker | H. Wildiers | S. Neuhausen | C. V. van Asperen | M. Bermisheva | D. Prokofyeva | C. Sutter | H. Christiansen | T. Park-Simon | D. Torres | H. Ulmer | J. Vijai | M. Robson | R. Rau-Murthy | M. Dwek | W. Tapper | D. Yannoukakos | S. Edwards | M. Lush | J. Kirk | L. Forétova | L. McGuffog | A. Godwin | F. Canzian | B. Peshkin | E. Friedman | S. Gapstur | G. Floris | N. Tung | E. Imyanitov | H. Aschard | P. Ganz | T. Slavin | A. Osorio | P. Hulick | B. Wappenschmidt | P. Auer | J. Taylor | R. Kaaks | S. Domchek | D. Stoppa-Lyonnet | R. Keeman | Sue-Kyung Park | H. Risch | A. Viel | D. Frost | F. Hogervorst | C. Engel | C. Singer | K. Claes | S. Narod | J. Rantala | S. Cornelissen | B. Arun | K. Aronson | A. Arason | J. French | I. Campbell | O. Díez | M. Troester | Austin Miller | D. Plaseska-Karanfilska | E. Hahnen | F. Nielsen | P. James | M. Daly | A. Jung | M. Manoochehri | Camilla Wendt | D. Goldgar | L. Senter | D. Barnes | M. Thomassen | Stella Koutros | A. Droit | J. García-Saenz | F. Moreno | D. Sandler | L. Nikitina-Zake | J. Collée | J. Lester | C. Cybulski | M. Teixeira | L. Fritschi | J. Balmaña | M. Scheuner | J. Weitzel | M. Tischkowitz | J. Chiquette | M. Terry | M. Iwasaki | B. Peissel | Michael E. Jones | J. Heyworth | Christopher Scott | S. Dubois | R. MacInnis | N. Håkansson | A. Grundy | G. Torres-Mejía | J. Gronwald | M. Gago-Domínguez | M. Martínez | J. Castelao | F. Lesueur | Wei He | T. Maishman | L. Durcan | C. Kitahara | H. Olsson | M. Gabrielson | A. Norman | M. Gaudet | C. Saunders | E. Oláh | P. Soucy | D. Barrowdale | M. Montagna | T. Caldés | E. J. van Rensburg | S. Ramus | M. Caligo | R. Janavicius | A. Kwong | M. Tibiletti | Y. Laitman | I. Pedersen | Y. Ding | Á. Teulé | M. Pujana | J. Loud | S. Agata | A. Romero | M. Durán | R. Mayes | C. Mclean | L. Fachal | Jamie Allen | B. Carter | V. Georgoulias | Guanmengqian Huang | M. Jakimovska | Johanna I. Kiiski | Eunjung Lee | W. Lo | D. Mavroudis | Pooja Middha | V. Munoz-Garzon | N. Presneau | E. Saloustros | Yan Zhang | A. Vega | Constance Turman | M. Hoya | A. Beeghly-Fadiel | Xia Jiang | S. Kar | Audrey Lemaçon | P. Harrington | P. Sharma | Maria Tengström | B. Auber | J. Azzollini | K. Białkowska | Amie M. Blanco | K. Bosse | I. Briceño | N. Mebirouk | G. Gambino | Bernadette A. M. Heemskerk-Gerritsen | R. Jankowitz | I. Konstantopoulou | K. Kubelka-Sabit | G. Leslie | T. Maurer | R. Nassir | J. Papp | M. Parsons | J. Paul | E. Sánchez-Herrero | M. Santamariña | S. Smichkoska | Y. Tan | D. Thull | M. M. Marjaneh | Gemo Study Collaborators | Embrace Collaborators | Miguel de la Hoya | Karolina Prajzendanz | C. Rossing | Lizet E. van der Kolk | M. Vogel | I. Briceño | Michael E. Jones | J. E. Castelao | E. V. Rensburg | Goska Leslie | L. E. D. der Kolk | L. V. D. Kolk | R. Rau‐Murthy | C. Turman | P. Middha | J. Kiiski | B. A. Heemskerk-Gerritsen | I. Tomlinson | E. Khusnutdinova | I. dos-Santos-Silva | Priyanka Sharma | Rodney J. Scott | L. Foretova | A. Teule | M. Tengström | C. Mclean | J. Stone | Anne Grundy | I. Tomlinson | Dominique Stoppa-Lyonnet | P. Hall | Graham G. Giles | Mervi Grip | D. Evans

[1]  D. Easton,et al.  Chromatin interactome mapping at 139 independent breast cancer risk signals , 2019, Genome Biology.

[2]  D. Easton,et al.  High-throughput allelic expression imbalance analyses identify candidate breast cancer risk genes , 2019, bioRxiv.

[3]  William Stafford Noble,et al.  Integrative detection and analysis of structural variation in cancer genomes , 2018, Nature Genetics.

[4]  Steven J. M. Jones,et al.  Comprehensive Characterization of Cancer Driver Genes and Mutations , 2018, Cell.

[5]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[6]  Benoît Ballester,et al.  ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments , 2017, Nucleic Acids Res..

[7]  A. Frigessi,et al.  DNA methylation at enhancers identifies distinct breast cancer lineages , 2017, Nature Communications.

[8]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[9]  Michael Jones,et al.  Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.

[10]  M. Smyth,et al.  Targeting immunosuppressive adenosine in cancer , 2017, Nature Reviews Cancer.

[11]  N. Waddell,et al.  Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. , 2017, American journal of human genetics.

[12]  R. Nusse,et al.  Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities , 2017, Cell.

[13]  Andrew H. Beck,et al.  Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue , 2017, PloS one.

[14]  K. Pollok,et al.  The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches , 2016, Journal of immunology research.

[15]  M. Hirst,et al.  The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.

[16]  Steven J. M. Jones,et al.  The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.

[17]  Steven J. M. Jones,et al.  Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks. , 2016, Cell reports.

[18]  M. Beckmann,et al.  Patient survival and tumor characteristics associated with CHEK2:p.I157T – findings from the Breast Cancer Association Consortium , 2016, Breast Cancer Research.

[19]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[20]  Ralf Herwig,et al.  Analyzing and interpreting genome data at the network level with ConsensusPathDB , 2016, Nature Protocols.

[21]  Michael Jones,et al.  Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Matthias W. Beckmann,et al.  Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation , 2016, American journal of human genetics.

[23]  S. Cross,et al.  Fine‐scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer , 2016, International journal of cancer.

[24]  Embrace,et al.  Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus , 2016 .

[25]  S. Cross,et al.  Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs) , 2016, Scientific Reports.

[26]  M. Beckmann,et al.  An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. , 2016, Human molecular genetics.

[27]  S. Cross,et al.  Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus , 2016, PloS one.

[28]  Jane E. Carpenter,et al.  Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus , 2016, Breast Cancer Research.

[29]  R. Vento,et al.  Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. , 2016, International journal of oncology.

[30]  Eleazar Eskin,et al.  Improved methods for multi-trait fine mapping of pleiotropic risk loci , 2016, bioRxiv.

[31]  N. Rosenfeld,et al.  The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes , 2016, Nature Communications.

[32]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[33]  Nicholas A. Sinnott-Armstrong,et al.  Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170 , 2016, Nature Genetics.

[34]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[35]  Dong Liang,et al.  BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. , 2016, Journal of the National Cancer Institute.

[36]  Ge Tan,et al.  TFBSTools: an R/bioconductor package for transcription factor binding site analysis , 2016, Bioinform..

[37]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[38]  J. Michael Cherry,et al.  ENCODE data at the ENCODE portal , 2015, Nucleic Acids Res..

[39]  Eloisa Arbustini,et al.  RE: BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. , 2016, Journal of the National Cancer Institute.

[40]  P. Provero,et al.  Total Binding Affinity Profiles of Regulatory Regions Predict Transcription Factor Binding and Gene Expression in Human Cells , 2015, PloS one.

[41]  Steven J. M. Jones,et al.  Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer , 2015, Cell.

[42]  S. Cross,et al.  Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk , 2015, Cancer Epidemiology, Biomarkers & Prevention.

[43]  Michael Kahn,et al.  Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update , 2015, Nature Reviews Clinical Oncology.

[44]  S. Ramón y. Cajal,et al.  Disruption of the ribosomal P complex leads to stress-induced autophagy , 2015, Autophagy.

[45]  S. Cross,et al.  Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. , 2015, American journal of human genetics.

[46]  S. Fox,et al.  Targeting Mdmx to treat breast cancers with wild-type p53 , 2015, Cell Death and Disease.

[47]  H. Pickett,et al.  A Common Cancer Risk-Associated Allele in the hTERT Locus Encodes a Dominant Negative Inhibitor of Telomerase , 2015, PLoS genetics.

[48]  Patrick Neven,et al.  Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer , 2015 .

[49]  Jaana M. Hartikainen,et al.  Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2 , 2015, Human molecular genetics.

[50]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[51]  Jaana M. Hartikainen,et al.  Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. , 2015, American journal of human genetics.

[52]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[53]  S. Cross,et al.  Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk , 2022 .

[54]  E. Eskin,et al.  Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies , 2014, PLoS genetics.

[55]  Jaana M. Hartikainen,et al.  Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation , 2014, Nature Communications.

[56]  Peter A. Jones,et al.  Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer , 2014, Genome research.

[57]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[58]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[59]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[60]  Jean J. Zhao,et al.  PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting , 2014, Nature Reviews Cancer.

[61]  Wei Lu,et al.  Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. , 2013, American journal of human genetics.

[62]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[63]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[64]  Wei Lu,et al.  Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. , 2013, American journal of human genetics.

[65]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[66]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[67]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[68]  D. Altshuler,et al.  Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk , 2013, PLoS genetics.

[69]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[70]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[71]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[72]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[73]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[74]  William Stafford Noble,et al.  Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors , 2012, Genome research.

[75]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[76]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[77]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[78]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[79]  Pedro C. Avila,et al.  Fast and accurate inference of local ancestry in Latino populations , 2012, Bioinform..

[80]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[81]  D. Easton,et al.  Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High‐Risk Mutations , 2012, Genetic epidemiology.

[82]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[83]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[84]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[85]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[86]  Gary D Bader,et al.  Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. , 2011, Methods in molecular biology.

[87]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[88]  D. Easton,et al.  Evaluating the power to discriminate between highly correlated SNPs in genetic association studies , 2010, Genetic epidemiology.

[89]  Montserrat Garcia-Closas,et al.  Genetic susceptibility to breast cancer , 2010, Molecular oncology.

[90]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[91]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[92]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[93]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[94]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[95]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[96]  S. Mader,et al.  NF‐κB and estrogen receptor α interactions: Differential function in estrogen receptor‐negative and ‐positive hormone‐independent breast cancer cells , 2009, Journal of cellular biochemistry.

[97]  C. Béroud,et al.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals , 2009, Nucleic acids research.

[98]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[99]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[100]  H. Okano,et al.  Musashi1 Modulates Mammary Progenitor Cell Expansion through Proliferin-Mediated Activation of the Wnt and Notch Pathways , 2008, Molecular and Cellular Biology.

[101]  F. Couch,et al.  RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. , 2007, American journal of human genetics.

[102]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[103]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[104]  Gopal R. Gopinath,et al.  Reactome: a knowledge base of biologic pathways and processes , 2007, Genome Biology.

[105]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Julian Peto,et al.  Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.

[107]  A. Sidow,et al.  Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. , 2005, Genome research.

[108]  P. Karp,et al.  Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.

[109]  Päivi Heikkilä,et al.  CHEK2 variant I157T may be associated with increased breast cancer risk , 2004, International journal of cancer.

[110]  Nazneen Rahman,et al.  CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. , 2004, American journal of human genetics.

[111]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[112]  Christopher B. Burge,et al.  Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.

[113]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[114]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .