Fine-mapping of 150 breast cancer risk regions identifies 178 high confidence target genes
暂无分享,去创建一个
Jack A. Taylor | W. Chung | S. Cross | P. Fasching | C. Weinberg | N. Camp | C. Vachon | K. Czene | P. Hall | V. Pankratz | A. Howell | F. Couch | A. Schneeweiss | H. Brenner | J. Chang-Claude | K. Kyriacou | M. García-Closas | B. Bonanni | O. Olopade | B. Karlan | A. Wolk | J. Benítez | P. Neven | R. Prentice | G. Giles | J. Hopper | C. Haiman | E. John | A. Spurdle | T. Dörk | W. Foulkes | M. Southey | A. Lophatananon | A. Cox | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | Chen-Yang Shen | D. Lambrechts | J. Peto | E. Khusnutdinova | N. Null | M. Greene | K. Offit | A. Antoniou | A. Brooks-Wilson | J. Spinelli | J. Carroll | Å. Borg | N. Orr | S. Buys | B. Schöttker | H. Brauch | V. Kristensen | P. Hillemanns | J. Long | X. Shu | W. Zheng | H. Anton-Culver | P. Guénel | W. Blot | R. Barkardottir | K. Pooley | A. Dunning | C. Healey | D. Eccles | D. Evans | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | H. Nevanlinna | D. Kang | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | I. Brock | R. Milne | A. González-Neira | U. Hamann | Y. Ko | J. Beesley | A. Mannermaa | V. Kosma | J. Hartikainen | M. Shah | K. Nathanson | N. Miller | M. Kerin | M. Tzardi | C. Clarke | J. Garber | C. Isaacs | A. Lindblom | K. Michailidou | M. Ghoussaini | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | T. Muranen | K. Aittomäki | C. Blomqvist | A. Meindl | R. Schmutzler | E. Makalic | D. Schmidt | H. Flyger | B. Burwinkel | M. Alonso | E. Sawyer | I. Tomlinson | I. Andrulis | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | A. Jager | J. Stone | G. Dite | V. Arndt | A. Swerdlow | M. Goldberg | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | T. Brüning | P. Radice | P. Peterlongo | S. Manoukian | C. Seynaeve | C. Asperen | A. Jakubowska | J. Lubiński | N. Antonenkova | A. Toland | K. Matsuo | A. Wu | S. Teo | M. Hartman | Q. Cai | J. Simard | P. Pharoah | J. Tyrer | M. Eriksson | I. Dos-Santos-Silva | M. Schoemaker | H. Wildiers | S. Neuhausen | C. V. van Asperen | M. Bermisheva | D. Prokofyeva | C. Sutter | H. Christiansen | T. Park-Simon | D. Torres | H. Ulmer | J. Vijai | M. Robson | R. Rau-Murthy | M. Dwek | W. Tapper | D. Yannoukakos | S. Edwards | M. Lush | J. Kirk | L. Forétova | L. McGuffog | A. Godwin | F. Canzian | B. Peshkin | E. Friedman | S. Gapstur | G. Floris | N. Tung | E. Imyanitov | H. Aschard | P. Ganz | T. Slavin | A. Osorio | P. Hulick | B. Wappenschmidt | P. Auer | J. Taylor | R. Kaaks | S. Domchek | D. Stoppa-Lyonnet | R. Keeman | Sue-Kyung Park | H. Risch | A. Viel | D. Frost | F. Hogervorst | C. Engel | C. Singer | K. Claes | S. Narod | J. Rantala | S. Cornelissen | B. Arun | K. Aronson | A. Arason | J. French | I. Campbell | O. Díez | M. Troester | Austin Miller | D. Plaseska-Karanfilska | E. Hahnen | F. Nielsen | P. James | M. Daly | A. Jung | M. Manoochehri | Camilla Wendt | D. Goldgar | L. Senter | D. Barnes | M. Thomassen | Stella Koutros | A. Droit | J. García-Saenz | F. Moreno | D. Sandler | L. Nikitina-Zake | J. Collée | J. Lester | C. Cybulski | M. Teixeira | L. Fritschi | J. Balmaña | M. Scheuner | J. Weitzel | M. Tischkowitz | J. Chiquette | M. Terry | M. Iwasaki | B. Peissel | Michael E. Jones | J. Heyworth | Christopher Scott | S. Dubois | R. MacInnis | N. Håkansson | A. Grundy | G. Torres-Mejía | J. Gronwald | M. Gago-Domínguez | M. Martínez | J. Castelao | F. Lesueur | Wei He | T. Maishman | L. Durcan | C. Kitahara | H. Olsson | M. Gabrielson | A. Norman | M. Gaudet | C. Saunders | E. Oláh | P. Soucy | D. Barrowdale | M. Montagna | T. Caldés | E. J. van Rensburg | S. Ramus | M. Caligo | R. Janavicius | A. Kwong | M. Tibiletti | Y. Laitman | I. Pedersen | Y. Ding | Á. Teulé | M. Pujana | J. Loud | S. Agata | A. Romero | M. Durán | R. Mayes | C. Mclean | L. Fachal | Jamie Allen | B. Carter | V. Georgoulias | Guanmengqian Huang | M. Jakimovska | Johanna I. Kiiski | Eunjung Lee | W. Lo | D. Mavroudis | Pooja Middha | V. Munoz-Garzon | N. Presneau | E. Saloustros | Yan Zhang | A. Vega | Constance Turman | M. Hoya | A. Beeghly-Fadiel | Xia Jiang | S. Kar | Audrey Lemaçon | P. Harrington | P. Sharma | Maria Tengström | B. Auber | J. Azzollini | K. Białkowska | Amie M. Blanco | K. Bosse | I. Briceño | N. Mebirouk | G. Gambino | Bernadette A. M. Heemskerk-Gerritsen | R. Jankowitz | I. Konstantopoulou | K. Kubelka-Sabit | G. Leslie | T. Maurer | R. Nassir | J. Papp | M. Parsons | J. Paul | E. Sánchez-Herrero | M. Santamariña | S. Smichkoska | Y. Tan | D. Thull | M. M. Marjaneh | Gemo Study Collaborators | Embrace Collaborators | Miguel de la Hoya | Karolina Prajzendanz | C. Rossing | Lizet E. van der Kolk | M. Vogel | I. Briceño | Michael E. Jones | J. E. Castelao | E. V. Rensburg | Goska Leslie | L. E. D. der Kolk | L. V. D. Kolk | R. Rau‐Murthy | C. Turman | P. Middha | J. Kiiski | B. A. Heemskerk-Gerritsen | I. Tomlinson | E. Khusnutdinova | I. dos-Santos-Silva | Priyanka Sharma | Rodney J. Scott | L. Foretova | A. Teule | M. Tengström | C. Mclean | J. Stone | Anne Grundy | I. Tomlinson | Dominique Stoppa-Lyonnet | P. Hall | Graham G. Giles | Mervi Grip | D. Evans
[1] D. Easton,et al. Chromatin interactome mapping at 139 independent breast cancer risk signals , 2019, Genome Biology.
[2] D. Easton,et al. High-throughput allelic expression imbalance analyses identify candidate breast cancer risk genes , 2019, bioRxiv.
[3] William Stafford Noble,et al. Integrative detection and analysis of structural variation in cancer genomes , 2018, Nature Genetics.
[4] Steven J. M. Jones,et al. Comprehensive Characterization of Cancer Driver Genes and Mutations , 2018, Cell.
[5] T. Hughes,et al. The Human Transcription Factors , 2018, Cell.
[6] Benoît Ballester,et al. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments , 2017, Nucleic Acids Res..
[7] A. Frigessi,et al. DNA methylation at enhancers identifies distinct breast cancer lineages , 2017, Nature Communications.
[8] Gary D Bader,et al. Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.
[9] Michael Jones,et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.
[10] M. Smyth,et al. Targeting immunosuppressive adenosine in cancer , 2017, Nature Reviews Cancer.
[11] N. Waddell,et al. Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. , 2017, American journal of human genetics.
[12] R. Nusse,et al. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities , 2017, Cell.
[13] Andrew H. Beck,et al. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue , 2017, PloS one.
[14] K. Pollok,et al. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches , 2016, Journal of immunology research.
[15] M. Hirst,et al. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.
[16] Steven J. M. Jones,et al. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.
[17] Steven J. M. Jones,et al. Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks. , 2016, Cell reports.
[18] M. Beckmann,et al. Patient survival and tumor characteristics associated with CHEK2:p.I157T – findings from the Breast Cancer Association Consortium , 2016, Breast Cancer Research.
[19] Dennis J. Hazelett,et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.
[20] Ralf Herwig,et al. Analyzing and interpreting genome data at the network level with ConsensusPathDB , 2016, Nature Protocols.
[21] Michael Jones,et al. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[22] Matthias W. Beckmann,et al. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation , 2016, American journal of human genetics.
[23] S. Cross,et al. Fine‐scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer , 2016, International journal of cancer.
[24] Embrace,et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus , 2016 .
[25] S. Cross,et al. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs) , 2016, Scientific Reports.
[26] M. Beckmann,et al. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. , 2016, Human molecular genetics.
[27] S. Cross,et al. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus , 2016, PloS one.
[28] Jane E. Carpenter,et al. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus , 2016, Breast Cancer Research.
[29] R. Vento,et al. Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. , 2016, International journal of oncology.
[30] Eleazar Eskin,et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci , 2016, bioRxiv.
[31] N. Rosenfeld,et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes , 2016, Nature Communications.
[32] David C. Jones,et al. Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.
[33] Nicholas A. Sinnott-Armstrong,et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170 , 2016, Nature Genetics.
[34] F. Cunningham,et al. The Ensembl Variant Effect Predictor , 2016, Genome Biology.
[35] Dong Liang,et al. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. , 2016, Journal of the National Cancer Institute.
[36] Ge Tan,et al. TFBSTools: an R/bioconductor package for transcription factor binding site analysis , 2016, Bioinform..
[37] David J. Arenillas,et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..
[38] J. Michael Cherry,et al. ENCODE data at the ENCODE portal , 2015, Nucleic Acids Res..
[39] Eloisa Arbustini,et al. RE: BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. , 2016, Journal of the National Cancer Institute.
[40] P. Provero,et al. Total Binding Affinity Profiles of Regulatory Regions Predict Transcription Factor Binding and Gene Expression in Human Cells , 2015, PloS one.
[41] Steven J. M. Jones,et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer , 2015, Cell.
[42] S. Cross,et al. Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk , 2015, Cancer Epidemiology, Biomarkers & Prevention.
[43] Michael Kahn,et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update , 2015, Nature Reviews Clinical Oncology.
[44] S. Ramón y. Cajal,et al. Disruption of the ribosomal P complex leads to stress-induced autophagy , 2015, Autophagy.
[45] S. Cross,et al. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. , 2015, American journal of human genetics.
[46] S. Fox,et al. Targeting Mdmx to treat breast cancers with wild-type p53 , 2015, Cell Death and Disease.
[47] H. Pickett,et al. A Common Cancer Risk-Associated Allele in the hTERT Locus Encodes a Dominant Negative Inhibitor of Telomerase , 2015, PLoS genetics.
[48] Patrick Neven,et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer , 2015 .
[49] Jaana M. Hartikainen,et al. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2 , 2015, Human molecular genetics.
[50] Michael Q. Zhang,et al. Integrative analysis of 111 reference human epigenomes , 2015, Nature.
[51] Jaana M. Hartikainen,et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. , 2015, American journal of human genetics.
[52] M. Daly,et al. Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.
[53] S. Cross,et al. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk , 2022 .
[54] E. Eskin,et al. Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies , 2014, PLoS genetics.
[55] Jaana M. Hartikainen,et al. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation , 2014, Nature Communications.
[56] Peter A. Jones,et al. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer , 2014, Genome research.
[57] T. Meehan,et al. An atlas of active enhancers across human cell types and tissues , 2014, Nature.
[58] Melissa J. Landrum,et al. RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..
[59] M. Lupien,et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.
[60] Jean J. Zhao,et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting , 2014, Nature Reviews Cancer.
[61] Wei Lu,et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. , 2013, American journal of human genetics.
[62] R. Young,et al. Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.
[63] Joshua M. Stuart,et al. The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.
[64] Wei Lu,et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. , 2013, American journal of human genetics.
[65] Jaana M. Hartikainen,et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.
[66] Wei Lu,et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.
[67] W. Chung,et al. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.
[68] D. Altshuler,et al. Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk , 2013, PLoS genetics.
[69] A. McKenna,et al. Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.
[70] Steven J. M. Jones,et al. Comprehensive molecular portraits of human breast tumours , 2013 .
[71] Kenny Q. Ye,et al. An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.
[72] J. Massagué. TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.
[73] Data production leads,et al. An integrated encyclopedia of DNA elements in the human genome , 2012 .
[74] William Stafford Noble,et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors , 2012, Genome research.
[75] Bronwen L. Aken,et al. GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.
[76] Swneke D. Bailey,et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.
[77] J. Marchini,et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.
[78] Steven J. M. Jones,et al. Comprehensive molecular portraits of human breast tumors , 2012, Nature.
[79] Pedro C. Avila,et al. Fast and accurate inference of local ancestry in Latino populations , 2012, Bioinform..
[80] F. Markowetz,et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.
[81] D. Easton,et al. Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High‐Risk Mutations , 2012, Genetic epidemiology.
[82] Andrey A. Shabalin,et al. Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..
[83] Colin N. Dewey,et al. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.
[84] G. Getz,et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.
[85] William Stafford Noble,et al. FIMO: scanning for occurrences of a given motif , 2011, Bioinform..
[86] Gary D Bader,et al. Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. , 2011, Methods in molecular biology.
[87] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[88] D. Easton,et al. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies , 2010, Genetic epidemiology.
[89] Montserrat Garcia-Closas,et al. Genetic susceptibility to breast cancer , 2010, Molecular oncology.
[90] Tariq Ahmad,et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.
[91] P. Bork,et al. A method and server for predicting damaging missense mutations , 2010, Nature Methods.
[92] Aaron R. Quinlan,et al. Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .
[93] Timothy L. Bailey,et al. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.
[94] Gary D Bader,et al. NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.
[95] E. Liu,et al. An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.
[96] S. Mader,et al. NF‐κB and estrogen receptor α interactions: Differential function in estrogen receptor‐negative and ‐positive hormone‐independent breast cancer cells , 2009, Journal of cellular biochemistry.
[97] C. Béroud,et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals , 2009, Nucleic acids research.
[98] Kenneth H. Buetow,et al. PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..
[99] S. Henikoff,et al. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.
[100] H. Okano,et al. Musashi1 Modulates Mammary Progenitor Cell Expansion through Proliferin-Mediated Activation of the Wnt and Notch Pathways , 2008, Molecular and Cellular Biology.
[101] F. Couch,et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. , 2007, American journal of human genetics.
[102] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[103] W. Willett,et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.
[104] Gopal R. Gopinath,et al. Reactome: a knowledge base of biologic pathways and processes , 2007, Genome Biology.
[105] Pablo Tamayo,et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[106] Julian Peto,et al. Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.
[107] A. Sidow,et al. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. , 2005, Genome research.
[108] P. Karp,et al. Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.
[109] Päivi Heikkilä,et al. CHEK2 variant I157T may be associated with increased breast cancer risk , 2004, International journal of cancer.
[110] Nazneen Rahman,et al. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. , 2004, American journal of human genetics.
[111] M. Campbell,et al. PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.
[112] Christopher B. Burge,et al. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.
[113] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[114] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .