We derive Galactic continuum spectra from 5-96 cm(-1) fromCOBE/FIRAS observations. The spectra are dominated by warm dust emission,which may be fitted with a single temperature in the range 16-21 K (fornu(2) emissivity) along each line of sight. Dust heated by the attenuatedradiation field in molecular clouds gives rise tointermediate-temperature (10-14 K) emission in the inner Galaxy only. Awidespread, very cold component (4-7 K) with optical depth that isspatially correlated with the warm component is also detected. The coldcomponent is unlikely to be due to very cold dust shielded from starlightbecause it is present at high latitude. We consider hypotheses that thecold component is due to enhanced submillimeter emissivity of the dustthat gives rise to the warm component, or that it may be due to verysmall, large, or fractal particles. Lack of substantial power above theemission from warm dust places strong constraints on the amount of coldgas in the Galaxy. The microwave sky brightness due to interstellar dustis dominated by the cold component, and its angular variation could limitour ability to discern primordial fluctuations in the cosmic microwavebackground radiation.