MEDIAL AXIS GENERALISATION OF HYDROLOGY NETWORKS

We examine some benefits of using the medial axis as a centreline for rivers and lakes. One obvious benefit, automatic centreline generation, has been used for many years. We look at how the topological relationships between the medial axis and the river banks or lake shores can provide extra network characteristics such as river areas and opposite river banks. We also report on our experience at ap proximating the medial axis with a Voronoi diagram of point sites.

[1]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[2]  A. N. Strahler Quantitative analysis of watershed geomorphology , 1957 .

[3]  R. L. Shreve Statistical Law of Stream Numbers , 1966, The Journal of Geology.

[4]  Herbert Freeman,et al.  A PROGRAM FOR AUTOMATIC NAME PLACEMENT , 1984 .

[5]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[6]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..

[7]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[8]  Bradford George Nickerson,et al.  Automated cartographic generalization for linear map features , 1987 .

[9]  A. Stevens,et al.  Quadtree storage of vector data , 1988, Int. J. Geogr. Inf. Sci..

[10]  Clifford A. Shaffer,et al.  QUILT: a geographic information system based on quadtrees , 1990, Int. J. Geogr. Inf. Sci..

[11]  A. Skidmore Terrain position as mapped from a gridded digital elevation model , 1990 .

[12]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[13]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[14]  P. J. Vermeer,et al.  Two-dimensional MAT to boundary conversion , 1993, Solid Modeling and Applications.

[15]  Christopher M. Gold Persistent Spatial Relations - a Systems Design Objective , 1994, CCCG.

[16]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[17]  V. T. Rajan,et al.  An efficient shape representation scheme using Voronoi skeletons , 1995, Pattern Recognit. Lett..

[18]  C. Gold THREE APPROACHES TO AUTOMATED TOPOLOGY , AND HOW COMPUTATIONAL GEOMETRY HELPS , 1999 .

[19]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[20]  Jean-Daniel Boissonnat,et al.  A semidynamic construction of higher-order voronoi diagrams and its randomized analysis , 1993, Algorithmica.

[21]  H. N. Gürsoy,et al.  An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part i algorithms , 1992, Engineering with Computers.