Gravitational neuromorphology.

This review shows that morphological studies of the central, peripheral and autonomic nervous system of animals exposed to altered gravity yield data which are extremely significant for our understanding of the mechanisms of adaptation of the nervous system, and of the mammalian organism as a whole, to increased and decreased loading. Neuromorphological studies, correlating structure and function, indicate a decreased activity in weightlessness for spinal ganglia neurons and motoneurons of the spinal cord, as well as the neurons of the hypothalamic nuclei producing arginine vasopressin and growth hormone releasing factor. Structural changes of the somatosensory cortex and spinal ganglia suggest a decreased afferent flow to the somatosensory cortex in microgravity. The results characterize the mechanisms of structural adaptation to a decreased afferent flow in microgravity by the neurons in the hemisphere cortex and brain stem nuclei. There is also morphological evidence for an increased sensitivity of the otolith apparatus and for the development of a hyponoradrenergic syndrome in weightlessness. These studies have shown that both microgravity and the simulation of microgravity effects by tail suspension-induced structural changes in the large neurons of lumbar spinal ganglia and motoneurons of the lumbar spinal cord, which occur under conditions of nerve cell hypoactivity. The structural changes, and consequently the development of neuron hypoactivity, are expressed more extensively after microgravity than after tail suspension for the same length of time. The influence of microgravity and hypergravity on animals is expressed by opposing changes in nervous tissue structure in the spinal ganglia, spinal cord, and nodulus of cerebellar vermis. These changes indicate neuron hypoactivity under microgravity and neuron hyperactivity under 2 G. Morphological assessment of the functional state of other structures of the brain under hypergravity will require further study. Can all structural changes which occur in nerve tissue under microgravity or under hypergravity be explained on the basis of increased or decreased activity of its structural elements? The presently available data regarding the correlation of structure and functional state of cells in brain and spinal cord suggest an affirmative answer. Ultrastructural studies of the nodular cortex of the cerebellum in rats after different duration spaceflights provide what appears to be a convincing example. However, it should be pointed out that the criteria for the morphological assessment of the functional state of single nerve cells will certainly be different from those for groups of neurons connected in a nerve cell network.(ABSTRACT TRUNCATED AT 400 WORDS)