Towards understanding CG and GMRES through examples
暂无分享,去创建一个
[1] Bjørn Fredrik Nielsen,et al. A Simple Formula for the Generalized Spectrum of Second Order Self-Adjoint Differential Operators , 2024, SIAM Rev..
[2] Richard J. Leute,et al. An optimal preconditioned FFT-accelerated finite element solver for homogenization , 2023, Appl. Math. Comput..
[3] B. F. Nielsen,et al. Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning , 2022, Numerical Algorithms.
[4] Matthew J. Colbrook,et al. SpecSolve: Spectral methods for spectral measures , 2022, ArXiv.
[5] Jan Zeman,et al. Elimination of ringing artifacts by finite-element projection in FFT-based homogenization , 2021, J. Comput. Phys..
[6] Ivana Pultarová,et al. Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems , 2021, Numer. Linear Algebra Appl..
[7] Gérard Meurant,et al. Accurate error estimation in CG , 2021, Numerical Algorithms.
[8] John W. Pearson,et al. Preconditioners for Krylov subspace methods: An overview , 2020, GAMM-Mitteilungen.
[9] Matthew J. Colbrook,et al. Computing spectral measures of self-adjoint operators , 2020, SIAM Rev..
[10] Pseudospectra of matrices , 2020, Spectra and Pseudospectra.
[11] Erin Carson,et al. On the cost of iterative computations , 2020, Philosophical Transactions of the Royal Society A.
[12] Jan Zeman,et al. Guaranteed Two-Sided Bounds on All Eigenvalues of Preconditioned Diffusion and Elasticity Problems Solved by the Finite Element Method , 2020, Applications of Mathematics.
[13] G. Meurant. On prescribing the convergence behavior of the conjugate gradient algorithm , 2019, Numerical Algorithms.
[14] Ivana Pultarová,et al. Decomposition into subspaces preconditioning: abstract framework , 2019, Numerical Algorithms.
[15] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[16] Zdenek Strakos,et al. Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator , 2018, SIAM J. Numer. Anal..
[17] D. R. Lide. Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators , 2018 .
[18] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[19] Iveta Hnetynková,et al. Relating Computed and Exact Entities in Methods Based on Lanczos Tridiagonalization , 2017, HPCSE.
[20] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[21] A. Greenbaum,et al. Matrices That Generate the Same Krylov Residual Spaces , 2015 .
[22] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[23] Zdenek Strakos,et al. Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.
[24] Gérard Meurant,et al. On investigating GMRES convergence using unitary matrices , 2014 .
[25] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[26] Jörg Liesen,et al. Properties of Worst-Case GMRES , 2013, SIAM J. Matrix Anal. Appl..
[27] J. Liesen,et al. Max-min and min-max approximation problems for normal matrices revisited , 2013, 1310.5880.
[28] Tomáš Gergelits,et al. Analysis of Krylov subspace methods , 2013 .
[29] Y. Saad,et al. Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..
[30] Zdenek Strakos,et al. Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.
[31] Aslak Tveito,et al. Preconditioning by inverting the Laplacian: an analysis of the eigenvalues , 2008 .
[32] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[33] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[34] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[35] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[36] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[37] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[38] Zdenek Strakos,et al. GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..
[39] Jörg Liesen,et al. Convergence analysis of Krylov subspace methods , 2004 .
[40] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[41] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[42] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[43] Zdenek Strakos,et al. Bounds for the least squares distance using scaled total least squares , 2002, Numerische Mathematik.
[44] Zdenek Strakos,et al. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..
[45] Arno B. J. Kuijlaars,et al. Which Eigenvalues Are Found by the Lanczos Method? , 2000, SIAM J. Matrix Anal. Appl..
[46] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[47] M. Arioli,et al. Krylov sequences of maximal length and convergence of GMRES , 1997 .
[48] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[49] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[50] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[51] C. Brezinski. The methods of Vorobyev and Lanczos , 1996 .
[52] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[53] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[54] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[55] Wayne Joubert,et al. A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[56] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[57] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[58] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[59] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[60] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[61] Z. Strakos,et al. On the real convergence rate of the conjugate gradient method , 1991 .
[62] G. W. Stewart,et al. Lanczos and linear systems , 1991 .
[63] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[64] Thomas A. Manteuffel,et al. On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .
[65] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[66] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[67] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[68] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[69] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[70] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[71] William P. Reinhardt,et al. L2 discretization of atomic and molecular electronic continua: Moment, quadrature and J-matrix techniques , 1979 .
[72] A. Jennings. Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .
[73] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[74] W. Gragg. Matrix interpretations and applications of the continued fraction algorithm , 1974 .
[75] G. Golub,et al. Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. , 1972 .
[76] Roy G. Gordon,et al. Error Bounds in Equilibrium Statistical Mechanics , 1968 .
[77] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[78] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[79] George E. Forsythe,et al. Solving linear algebraic equations can be interesting , 1953 .
[80] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[81] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.
[82] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[83] W. Karush. Convergence of a method of solving linear problems , 1952 .
[84] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[85] Gérard Meurant,et al. Krylov Methods for Nonsymmetric Linear Systems , 2020 .
[86] Erin Carson,et al. Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .
[87] Numerische,et al. On the convergence rate of the conjugate gradients in presence of rounding errors * , 2005 .
[88] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[89] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[90] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[91] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[92] Gene H. Golub,et al. Closer to the solutions: iterative linear solvers , 1997 .
[93] L. Trefethen,et al. Numerical linear algebra , 1997 .
[94] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[95] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[96] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[97] Xiaomei Yang. Rounding Errors in Algebraic Processes , 1964, Nature.
[98] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .