Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential

A quantum kinetic master equation (QKME) for bosonic atoms is formulated. It is a quantum stochastic equation for the kinetics of a dilute quantum Bose gas, and describes the behavior and formation of Bose condensation. The key assumption in deriving the QKME is a Markov approximation for the atomic collision terms. In the present paper the basic structure of the theory is developed, and approximations are stated and justified to delineate the region of validity of the theory. Limiting cases of the QKME include the quantum Boltzmann master equation and the Uehling-Uhlenbeck equation, as well as an equation analogous to the Gross-Pitaevskii equation.

[1]  B. Esry,et al.  Hartree-Fock theory for Bose-Einstein condensates and the inclusion of correlation effects , 1997 .

[2]  Andrews,et al.  Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap. , 1996, Physical review letters.

[3]  Cornell,et al.  Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas. , 1996, Physical review letters.

[4]  Andrews,et al.  Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap. , 1996, Physical review letters.

[5]  Kagan,et al.  Evolution of a Bose-condensed gas under variations of the confining potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  K. Coakley,et al.  Trajectory simulation of kinetic equations for classical systems , 1996 .

[7]  Clark,et al.  Collective Excitations of Atomic Bose-Einstein Condensates. , 1996, Physical review letters.

[8]  Walraven,et al.  Bose-Einstein condensation in trapped atomic gases. , 1996, Physical review letters.

[9]  Clark,et al.  Properties of a Bose-Einstein condensate in an anisotropic harmonic potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Holland,et al.  Expansion of a Bose-Einstein condensate in a harmonic potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  S. Stringari,et al.  Collective Excitations of a Trapped Bose-Condensed Gas. , 1996, Physical review letters.

[12]  Griffin,et al.  Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. , 1996, Physical review. B, Condensed matter.

[13]  Lewenstein,et al.  Ground state of a weakly interacting Bose gas of atoms in a tight trap. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[15]  F. Dalfovo,et al.  Bosons in anisotropic traps: Ground state and vortices. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  S. Stringari,et al.  Moment of inertia and superfluidity of a trapped Bose gas. , 1995, Physical review letters.

[17]  G. Baym,et al.  Ground-state properties of magnetically trapped Bose-condensed rubidium gas. , 1995, Physical review letters.

[18]  Brody,et al.  Minimum decision cost for quantum ensembles. , 1995, Physical review letters.

[19]  Holland,et al.  Ballistic expansion of trapped thermal atoms. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  Reynolds,et al.  Kinetic theory of the evaporative cooling of a trapped gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[22]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[23]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[24]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[26]  Edwards,et al.  Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  Semikoz,et al.  Kinetics of Bose condensation. , 1994, Physical review letters.

[28]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[29]  Stoof Atomic Bose gas with a negative scattering length. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[30]  Lin,et al.  Bose-Einstein condensation of paraexcitons in stressed Cu2O. , 1993, Physical review letters.

[31]  H. Carmichael An open systems approach to quantum optics , 1993 .

[32]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[33]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[34]  Drummond,et al.  Squeezed quantum solitons and Raman noise. , 1991, Physical review letters.

[35]  Stoof Formation of the condensate in a dilute Bose gas. , 1991, Physical review letters.

[36]  Vaidman,et al.  Properties of a quantum system during the time interval between two measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[37]  Wolfe,et al.  Population dynamics of a Bose gas near saturation. , 1989, Physical review. B, Condensed matter.

[38]  P. Drummond,et al.  Quantum-field theory of squeezing in solitons , 1987 .

[39]  Lovelace,et al.  Theory of Bose-Einstein condensation of atomic hydrogen in a dynamic trap. , 1987, Physical review. A, General physics.

[40]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[41]  D. Huse,et al.  The density distribution of a weakly interacting bose gas in an external potential , 1982 .

[42]  A. Leggett,et al.  Atomic hydrogen in an inhomogeneous magnetic field: Density profile and Bose-Einstein condensation , 1981 .

[43]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[44]  V. Yakhot,et al.  Time development of coherent and superfluid properties in the course of a λ-transition , 1978 .

[45]  V. Yakhot,et al.  Time evolution of a Bose system passing through the critical point , 1977 .

[46]  E. Gross,et al.  Hydrodynamics of a Superfluid Condensate , 1963 .

[47]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[48]  J. Kirkwood,et al.  The Statistical‐Mechanical Theory of Transport Processes. VIII. Quantum Theory of Transport in Gases , 1954 .

[49]  C. Wieman,et al.  Bose-Einstein Condensation , 1995 .

[50]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[51]  L. Nordheim,et al.  Über die kinetische Fundamentalgleichung in der Quantenstatistik , 1930 .

[52]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[53]  L. Nordheim,et al.  On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity , 1928 .

[54]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .