Quantization causes waves: Smooth finitely computable functions are affine

Every automaton (a letter-to-letter transducer) A whose both input and output alphabets are Fp = {0, 1,..., p - 1} produces a 1-Lipschitz map fA from the space Zp of p-adic integers to Zp. The map fA can naturally be plotted in a unit real square I2 ⊂ R2: To an m-letter non-empty word v = γm-1γm-2... γ0 there corresponds a number 0.v ∈ R with base-p expansion 0.γm-1γm-2... γ0; so to every m-letter input word w = αm-1αm-2 ··· α0 of A and to the respective m-letter output word a(w) = βm-1βm-2 ··· β0 of A there corresponds a point (0.w; 0.a(w)) ∈ R2. Denote P(A) a closure of the point set (0.w; 0.a(w)) where w ranges over all non-empty words.We prove that once some points of P(A) constitute a C2-smooth curve in R2, the curve is a segment of a straight line with a rational slope. Moreover, when identifying P(A) with a subset of a 2-dimensional torus T2 ∈ R3, the smooth curves from P(A) constitute a collection of torus windings which can be ascribed to complex-valued functions ψ(x, t) = ei(Ax-2πBt) (x, t ∈ R), i.e., to matter waves. As automata are causal discrete systems, the main result may serve a mathematical reasoning why wave phenomena are inherent in quantum systems: This is just because of causality principle and discreteness of matter.

[1]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[2]  Jean Vuillemin Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.

[3]  Daniel Dubischar,et al.  The interference phenomenon, memory effects in the equipment and random dynamical systems over the fields of p-adic numbers , 1999 .

[4]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .

[5]  Andrei Khrennikov,et al.  Quantum mechanics from time scaling and random fluctuation , 2006 .

[6]  Akhil Mathew,et al.  The p-adic Numbers , 2009 .

[7]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[8]  L. P. Lisovik,et al.  Real functions defined by transducers , 1998 .

[9]  Berndt Farwer,et al.  ω-automata , 2002 .

[10]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[11]  Jean Vuillemin,et al.  On Circuits and Numbers , 1994, IEEE Trans. Computers.

[12]  Siegfried Bosch,et al.  p-adic Analysis , 1990 .

[13]  Nikita Sidorov,et al.  Topics in Dynamics and Ergodic Theory: Arithmetic dynamics , 2003 .

[14]  Darrel C. Ince,et al.  An introduction to discrete mathematics , 1988 .

[15]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[16]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[17]  K. Mahler p-adic numbers and their functions , 1981 .

[18]  Christiane Frougny,et al.  Rational base number systems for p-adic numbers , 2012, RAIRO Theor. Informatics Appl..

[19]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[20]  Jean Vuillemin,et al.  Digital Algebra and Circuits , 2003, Verification: Theory and Practice.

[21]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[22]  O. Yu. Shkaravskaya,et al.  Affine mappings defined by finite transducers , 1998 .

[23]  Boris Hasselblatt,et al.  A First Course in Dynamics: APPENDIX , 2003 .

[24]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[25]  André Barbé,et al.  Limit sets of automatic sequences , 2003 .

[26]  Vladimir Anashin Automata finiteness criterion in terms of van der Put series of automata functions , 2011, ArXiv.

[27]  L. Kauffman An Introduction to Knot Theory , 2001 .

[28]  V. S. Vladimirov,et al.  P-adic analysis and mathematical physics , 1994 .

[29]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[30]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[31]  Anatoliĭ Timofeevich Fomenko,et al.  A course of differential geometry and topology , 1988 .

[32]  Andrei Khrennikov,et al.  To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space , 2007 .

[33]  B. Nordstrom FINITE MARKOV CHAINS , 2005 .

[34]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[35]  Vladimir Anashin,et al.  The Non-Archimedean Theory of Discrete Systems , 2011, Math. Comput. Sci..

[36]  J. Wheeler Information, physics, quantum: the search for links , 1999 .

[37]  W. Parry On theβ-expansions of real numbers , 1960 .

[38]  Michal Konecný,et al.  Real functions computable by finite automata using affine representations , 2002, Theor. Comput. Sci..

[39]  T. V. H. Prathamesh Knot Theory , 2016, Arch. Formal Proofs.

[40]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[41]  A. N. Cherepov On approximation of continuous functions by determinate functions with delay , 2010 .

[42]  Vladimir Anashin,et al.  Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .

[43]  Jeremy J. Carroll,et al.  Theory of Finite Automata , 1989 .

[44]  A. F. Monna Sur une transformation simple des nombres P-adiques en nombres reels , 1952 .

[45]  W. Henle The Interference Phenomenon. , 1949 .

[46]  Andrew Khrennikov,et al.  The ultrametric Hilbert-space description of quantum measurements with a finite exactness , 1996 .

[47]  A. N. Cherepov Approximation of continuous functions by finite automata , 2012 .