Quantization causes waves: Smooth finitely computable functions are affine
暂无分享,去创建一个
[1] Jeffrey Shallit,et al. Automatic Sequences by Jean-Paul Allouche , 2003 .
[2] Jean Vuillemin. Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.
[3] Daniel Dubischar,et al. The interference phenomenon, memory effects in the equipment and random dynamical systems over the fields of p-adic numbers , 1999 .
[4] Charalambos D. Aliprantis,et al. Principles of Real Analysis , 1981 .
[5] Andrei Khrennikov,et al. Quantum mechanics from time scaling and random fluctuation , 2006 .
[6] Akhil Mathew,et al. The p-adic Numbers , 2009 .
[7] B. Dubrovin,et al. Modern geometry--methods and applications , 1984 .
[8] L. P. Lisovik,et al. Real functions defined by transducers , 1998 .
[9] Berndt Farwer,et al. ω-automata , 2002 .
[10] Andrei Khrennikov,et al. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .
[11] Jean Vuillemin,et al. On Circuits and Numbers , 1994, IEEE Trans. Computers.
[12] Siegfried Bosch,et al. p-adic Analysis , 1990 .
[13] Nikita Sidorov,et al. Topics in Dynamics and Ergodic Theory: Arithmetic dynamics , 2003 .
[14] Darrel C. Ince,et al. An introduction to discrete mathematics , 1988 .
[15] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[16] J. Shallit,et al. Automatic Sequences: Contents , 2003 .
[17] K. Mahler. p-adic numbers and their functions , 1981 .
[18] Christiane Frougny,et al. Rational base number systems for p-adic numbers , 2012, RAIRO Theor. Informatics Appl..
[19] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[20] Jean Vuillemin,et al. Digital Algebra and Circuits , 2003, Verification: Theory and Practice.
[21] Jean Berstel. Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.
[22] O. Yu. Shkaravskaya,et al. Affine mappings defined by finite transducers , 1998 .
[23] Boris Hasselblatt,et al. A First Course in Dynamics: APPENDIX , 2003 .
[24] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[25] André Barbé,et al. Limit sets of automatic sequences , 2003 .
[26] Vladimir Anashin. Automata finiteness criterion in terms of van der Put series of automata functions , 2011, ArXiv.
[27] L. Kauffman. An Introduction to Knot Theory , 2001 .
[28] V. S. Vladimirov,et al. P-adic analysis and mathematical physics , 1994 .
[29] M. Lothaire,et al. Algebraic Combinatorics on Words: Index of Notation , 2002 .
[30] Andrei Khrennikov,et al. Applied Algebraic Dynamics , 2009 .
[31] Anatoliĭ Timofeevich Fomenko,et al. A course of differential geometry and topology , 1988 .
[32] Andrei Khrennikov,et al. To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space , 2007 .
[33] B. Nordstrom. FINITE MARKOV CHAINS , 2005 .
[34] A. Rényi. Representations for real numbers and their ergodic properties , 1957 .
[35] Vladimir Anashin,et al. The Non-Archimedean Theory of Discrete Systems , 2011, Math. Comput. Sci..
[36] J. Wheeler. Information, physics, quantum: the search for links , 1999 .
[37] W. Parry. On theβ-expansions of real numbers , 1960 .
[38] Michal Konecný,et al. Real functions computable by finite automata using affine representations , 2002, Theor. Comput. Sci..
[39] T. V. H. Prathamesh. Knot Theory , 2016, Arch. Formal Proofs.
[40] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .
[41] A. N. Cherepov. On approximation of continuous functions by determinate functions with delay , 2010 .
[42] Vladimir Anashin,et al. Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .
[43] Jeremy J. Carroll,et al. Theory of Finite Automata , 1989 .
[44] A. F. Monna. Sur une transformation simple des nombres P-adiques en nombres reels , 1952 .
[45] W. Henle. The Interference Phenomenon. , 1949 .
[46] Andrew Khrennikov,et al. The ultrametric Hilbert-space description of quantum measurements with a finite exactness , 1996 .
[47] A. N. Cherepov. Approximation of continuous functions by finite automata , 2012 .